talk-data.com
Context is King: Evaluating Long Context vs. RAG for Data Grounding
Speakers
Description
Grounding Large Language Models in your specific data is crucial, but notoriously challenging. Retrieval-Augmented Generation (RAG) is the common pattern, yet practical implementations are often brittle, suffering from poor retrieval, ineffective chunking, and context limitations, leading to inaccurate or irrelevant answers. The emergence of massive context windows (1M+ tokens) seems to offer a simpler path – just put all your data in the prompt! But does it truly solve the "needle in a haystack" problem, or introduce new challenges like prohibitive costs and information getting lost in the middle? This talk dives deep into the engineering realities. We'll dissect common RAG failure modes, explore techniques for building robust RAG systems (advanced retrieval, re-ranking, query transformations), and critically evaluate the practical viability, costs, and limitations of leveraging long context windows for complex data tasks in Python. Leave understanding the real trade-offs to make informed architectural decisions for building reliable, data-grounded GenAI applications.