Recent works find that AI algorithms learn biases from data. Therefore, it is urgent and vital to identify biases in AI algorithms. However, previous bias identification methods overly rely on human experts to conjecture potential biases, which may neglect other underlying biases not realized by humans. Is there an automatic way to assist human experts in finding biases in a broad domain of image classifiers? In this talk, I will introduce solutions.
talk-data.com
Company
University of Rochester
Speakers
1
Activities
2
Speakers from University of Rochester
Talks & appearances
2 activities from University of Rochester speakers
Chenliang Xu
(Associate Professor)
Chenliang Xu
(Associate Professor)
Recent works find that AI algorithms learn biases from data. Therefore, it is urgent and vital to identify biases in AI algorithms. However, previous bias identification methods overly rely on human experts to conjecture potential biases, which may neglect other underlying biases not realized by humans. Is there an automatic way to assist human experts in finding biases in a broad domain of image classifiers? In this talk, I will introduce solutions.