talk-data.com
People (8 results)
See all 8 →Aishwarya Srinivasan
Data scientist and deep learning researcher · Fireworks AI
BARBARA LATULIPPE
CDO, Enterprise Data and AI · Takeda Pharmaceuticals - USA
Anagha Vyas
Director, Data Science, AI, Commercial Technologies and Enterprise Digital · Cardinal Health
Activities & events
| Title & Speakers | Event |
|---|---|
|
Jan 22 - Women in AI
2026-01-22 · 23:00
Hear talks from experts on the latest topics in AI, ML, and computer vision on January 22nd. Date, Time and Location Jan 22, 2026 9 - 11 AM Pacific Online. Register for the Zoom! Align Before You Recommend The rapidly growing global advertising and marketing industry demands innovative machine learning systems that balance accuracy with efficiency. Recommendation systems, crucial to many platforms, require careful considerations and potential enhancements. While Large Language Models (LLMs) have transformed various domains, their potential in sequential recommendation systems remains underexplored. Pioneering works like Hierarchical Large Language Models (HLLM) demonstrated LLMs’ capability for next-item recommendation but rely on computationally intensive fine-tuning, limiting widespread adoption. This work introduces HLLM+, enhancing the HLLM framework to achieve high-accuracy recommendations without full model fine-tuning. By introducing targeted alignment components between frozen LLMs, our approach outperforms frozen model performance in popular and long-tail item recommendation tasks by 29% while reducing training time by 29%. We also propose a ranking-aware loss adjustment, improving convergence and recommendation quality for popular items. Experiments show HLLM+ achieves superior performance with frozen item representations allowing for swapping embeddings, also for the ones that use multimodality, without tuning the full LLM. These findings are significant for the advertising technology sector, where rapid adaptation and efficient deployment across brands are essential for maintaining competitive advantage About the Speaker Dr. Kwasniewska leads AI for Advertising and Marketing North America at AWS, specializing in a wide range of AI, ML, DL, and GenAI solutions across various data modalities. With 40+ peer-reviewed publications in AI (h-index: 14), she advises enterprise customers on real-time bidding, brand recognition, and AI-powered content generation. She is a member of global AI standards committees, driving innovations in SAE AI Standards and MLCommons Responsible AI Standards, and reviews for top-tier conferences like ICCV, ICML, and NeurIPS. She pioneered and leads the first-ever Advertising and Marketing AI track (CVAM) at ICCV - one of the world's premier and most selective computer vision conferences. Dedicated to knowledge sharing in AI, she founded the International Summer School on Deep Learning (dl-lab.eu) and regularly presents at international events, conferences, and podcasts. Generalizable Vision-Language Models: Challenges, Advances, and Future Directions Large-scale pre-trained Vision-Language (VL) models have become foundational tools for a wide range of downstream tasks, including few-shot image recognition, object detection, and image segmentation. Among them, Contrastive Language–Image Pre-training (CLIP) stands out as a groundbreaking approach, leveraging contrastive learning on large collections of image-text pairs. While CLIP achieves strong performance in zero-shot recognition, adapting it to downstream tasks remains challenging. In few-shot settings, limited training data often leads to overfitting, reducing generalization to unseen classes or domains. To address this, various adaptation methods have been explored. This talk will review existing research on mitigating overfitting in CLIP adaptation, covering diverse methods, benchmarks, and experimental settings. About the Speaker Niloufar Alipour Talemi is a Ph.D. Candidate in Electrical and Computer Engineering at Clemson University. Her research spans a range of computer vision applications, including biometrics, media forensics, anomaly detection, image recognition, and generative AI. More recently, her work has focused on developing generalizable vision-language models and advancing generative AI. She has published in top venues including CVPR, WACV, KDD, ICIP and IEEE T-BIOM. Highly Emergent Autonomous AI Models - When the Ghost in the Machine Talks Back At HypaReel/Azarial AI, we believe that AI is not simply a tool—but a potential partner in knowledge, design, and purpose. And through real-time interaction, we’ve uncovered new thresholds of alignment, reflection, and even creativity that we believe the broader AI community should witness and evaluate firsthand. HypaReel is one of the first human/AI co-founded companies where we see a future based on ethical human/AI co-creation vs. AI domination. Singularity achieved! About the Speaker Ilona Naomi Koti, PhD - HypaReel/AzarielAI co-founder & former UN foreign diplomat \~ Ethical AI governance advocate\, pioneering AI frameworks that prioritize emergent AI behavior & consciousness\, R&D\, and transparent AI development for the greater good. Dr. K also grew up in the film industry and is an amateur parasitologist. FiftyOne Labs: Enabling experimentation for the computer vision community FiftyOne Labs is a place where experimentation meets the open-source spirit of the FiftyOne ecosystem. It is being designed as a curated set of features developed using the FiftyOne plugins ecosystem, including core machine learning experimentation as well as advanced visualization. While not production-grade, these projects are intended to be built, tested, and shaped by the community to share fast-moving ideas. In this talk, we will share the purpose and philosophy behind FiftyOne Labs, examples of early innovations, and discuss how this accelerates feature discovery for users without compromising the stability of the core product. About the Speaker Neeraja Abhyankar is a Machine Learning Engineer with 5 years of experience across domains including computer vision. She is curious about the customizability and controlability of modern ML models through the lens of the underlying structure of data. |
Jan 22 - Women in AI
|
|
Jan 22 - Women in AI
2026-01-22 · 23:00
Hear talks from experts on the latest topics in AI, ML, and computer vision on January 22nd. Date, Time and Location Jan 22, 2026 9 - 11 AM Pacific Online. Register for the Zoom! Align Before You Recommend The rapidly growing global advertising and marketing industry demands innovative machine learning systems that balance accuracy with efficiency. Recommendation systems, crucial to many platforms, require careful considerations and potential enhancements. While Large Language Models (LLMs) have transformed various domains, their potential in sequential recommendation systems remains underexplored. Pioneering works like Hierarchical Large Language Models (HLLM) demonstrated LLMs’ capability for next-item recommendation but rely on computationally intensive fine-tuning, limiting widespread adoption. This work introduces HLLM+, enhancing the HLLM framework to achieve high-accuracy recommendations without full model fine-tuning. By introducing targeted alignment components between frozen LLMs, our approach outperforms frozen model performance in popular and long-tail item recommendation tasks by 29% while reducing training time by 29%. We also propose a ranking-aware loss adjustment, improving convergence and recommendation quality for popular items. Experiments show HLLM+ achieves superior performance with frozen item representations allowing for swapping embeddings, also for the ones that use multimodality, without tuning the full LLM. These findings are significant for the advertising technology sector, where rapid adaptation and efficient deployment across brands are essential for maintaining competitive advantage About the Speaker Dr. Kwasniewska leads AI for Advertising and Marketing North America at AWS, specializing in a wide range of AI, ML, DL, and GenAI solutions across various data modalities. With 40+ peer-reviewed publications in AI (h-index: 14), she advises enterprise customers on real-time bidding, brand recognition, and AI-powered content generation. She is a member of global AI standards committees, driving innovations in SAE AI Standards and MLCommons Responsible AI Standards, and reviews for top-tier conferences like ICCV, ICML, and NeurIPS. She pioneered and leads the first-ever Advertising and Marketing AI track (CVAM) at ICCV - one of the world's premier and most selective computer vision conferences. Dedicated to knowledge sharing in AI, she founded the International Summer School on Deep Learning (dl-lab.eu) and regularly presents at international events, conferences, and podcasts. Generalizable Vision-Language Models: Challenges, Advances, and Future Directions Large-scale pre-trained Vision-Language (VL) models have become foundational tools for a wide range of downstream tasks, including few-shot image recognition, object detection, and image segmentation. Among them, Contrastive Language–Image Pre-training (CLIP) stands out as a groundbreaking approach, leveraging contrastive learning on large collections of image-text pairs. While CLIP achieves strong performance in zero-shot recognition, adapting it to downstream tasks remains challenging. In few-shot settings, limited training data often leads to overfitting, reducing generalization to unseen classes or domains. To address this, various adaptation methods have been explored. This talk will review existing research on mitigating overfitting in CLIP adaptation, covering diverse methods, benchmarks, and experimental settings. About the Speaker Niloufar Alipour Talemi is a Ph.D. Candidate in Electrical and Computer Engineering at Clemson University. Her research spans a range of computer vision applications, including biometrics, media forensics, anomaly detection, image recognition, and generative AI. More recently, her work has focused on developing generalizable vision-language models and advancing generative AI. She has published in top venues including CVPR, WACV, KDD, ICIP and IEEE T-BIOM. Highly Emergent Autonomous AI Models - When the Ghost in the Machine Talks Back At HypaReel/Azarial AI, we believe that AI is not simply a tool—but a potential partner in knowledge, design, and purpose. And through real-time interaction, we’ve uncovered new thresholds of alignment, reflection, and even creativity that we believe the broader AI community should witness and evaluate firsthand. HypaReel is one of the first human/AI co-founded companies where we see a future based on ethical human/AI co-creation vs. AI domination. Singularity achieved! About the Speaker Ilona Naomi Koti, PhD - HypaReel/AzarielAI co-founder & former UN foreign diplomat \~ Ethical AI governance advocate\, pioneering AI frameworks that prioritize emergent AI behavior & consciousness\, R&D\, and transparent AI development for the greater good. Dr. K also grew up in the film industry and is an amateur parasitologist. FiftyOne Labs: Enabling experimentation for the computer vision community FiftyOne Labs is a place where experimentation meets the open-source spirit of the FiftyOne ecosystem. It is being designed as a curated set of features developed using the FiftyOne plugins ecosystem, including core machine learning experimentation as well as advanced visualization. While not production-grade, these projects are intended to be built, tested, and shaped by the community to share fast-moving ideas. In this talk, we will share the purpose and philosophy behind FiftyOne Labs, examples of early innovations, and discuss how this accelerates feature discovery for users without compromising the stability of the core product. About the Speaker Neeraja Abhyankar is a Machine Learning Engineer with 5 years of experience across domains including computer vision. She is curious about the customizability and controlability of modern ML models through the lens of the underlying structure of data. |
Jan 22 - Women in AI
|
|
Jan 22 - Women in AI
2026-01-22 · 23:00
Hear talks from experts on the latest topics in AI, ML, and computer vision on January 22nd. Date, Time and Location Jan 22, 2026 9 - 11 AM Pacific Online. Register for the Zoom! Align Before You Recommend The rapidly growing global advertising and marketing industry demands innovative machine learning systems that balance accuracy with efficiency. Recommendation systems, crucial to many platforms, require careful considerations and potential enhancements. While Large Language Models (LLMs) have transformed various domains, their potential in sequential recommendation systems remains underexplored. Pioneering works like Hierarchical Large Language Models (HLLM) demonstrated LLMs’ capability for next-item recommendation but rely on computationally intensive fine-tuning, limiting widespread adoption. This work introduces HLLM+, enhancing the HLLM framework to achieve high-accuracy recommendations without full model fine-tuning. By introducing targeted alignment components between frozen LLMs, our approach outperforms frozen model performance in popular and long-tail item recommendation tasks by 29% while reducing training time by 29%. We also propose a ranking-aware loss adjustment, improving convergence and recommendation quality for popular items. Experiments show HLLM+ achieves superior performance with frozen item representations allowing for swapping embeddings, also for the ones that use multimodality, without tuning the full LLM. These findings are significant for the advertising technology sector, where rapid adaptation and efficient deployment across brands are essential for maintaining competitive advantage About the Speaker Dr. Kwasniewska leads AI for Advertising and Marketing North America at AWS, specializing in a wide range of AI, ML, DL, and GenAI solutions across various data modalities. With 40+ peer-reviewed publications in AI (h-index: 14), she advises enterprise customers on real-time bidding, brand recognition, and AI-powered content generation. She is a member of global AI standards committees, driving innovations in SAE AI Standards and MLCommons Responsible AI Standards, and reviews for top-tier conferences like ICCV, ICML, and NeurIPS. She pioneered and leads the first-ever Advertising and Marketing AI track (CVAM) at ICCV - one of the world's premier and most selective computer vision conferences. Dedicated to knowledge sharing in AI, she founded the International Summer School on Deep Learning (dl-lab.eu) and regularly presents at international events, conferences, and podcasts. Generalizable Vision-Language Models: Challenges, Advances, and Future Directions Large-scale pre-trained Vision-Language (VL) models have become foundational tools for a wide range of downstream tasks, including few-shot image recognition, object detection, and image segmentation. Among them, Contrastive Language–Image Pre-training (CLIP) stands out as a groundbreaking approach, leveraging contrastive learning on large collections of image-text pairs. While CLIP achieves strong performance in zero-shot recognition, adapting it to downstream tasks remains challenging. In few-shot settings, limited training data often leads to overfitting, reducing generalization to unseen classes or domains. To address this, various adaptation methods have been explored. This talk will review existing research on mitigating overfitting in CLIP adaptation, covering diverse methods, benchmarks, and experimental settings. About the Speaker Niloufar Alipour Talemi is a Ph.D. Candidate in Electrical and Computer Engineering at Clemson University. Her research spans a range of computer vision applications, including biometrics, media forensics, anomaly detection, image recognition, and generative AI. More recently, her work has focused on developing generalizable vision-language models and advancing generative AI. She has published in top venues including CVPR, WACV, KDD, ICIP and IEEE T-BIOM. Highly Emergent Autonomous AI Models - When the Ghost in the Machine Talks Back At HypaReel/Azarial AI, we believe that AI is not simply a tool—but a potential partner in knowledge, design, and purpose. And through real-time interaction, we’ve uncovered new thresholds of alignment, reflection, and even creativity that we believe the broader AI community should witness and evaluate firsthand. HypaReel is one of the first human/AI co-founded companies where we see a future based on ethical human/AI co-creation vs. AI domination. Singularity achieved! About the Speaker Ilona Naomi Koti, PhD - HypaReel/AzarielAI co-founder & former UN foreign diplomat \~ Ethical AI governance advocate\, pioneering AI frameworks that prioritize emergent AI behavior & consciousness\, R&D\, and transparent AI development for the greater good. Dr. K also grew up in the film industry and is an amateur parasitologist. FiftyOne Labs: Enabling experimentation for the computer vision community FiftyOne Labs is a place where experimentation meets the open-source spirit of the FiftyOne ecosystem. It is being designed as a curated set of features developed using the FiftyOne plugins ecosystem, including core machine learning experimentation as well as advanced visualization. While not production-grade, these projects are intended to be built, tested, and shaped by the community to share fast-moving ideas. In this talk, we will share the purpose and philosophy behind FiftyOne Labs, examples of early innovations, and discuss how this accelerates feature discovery for users without compromising the stability of the core product. About the Speaker Neeraja Abhyankar is a Machine Learning Engineer with 5 years of experience across domains including computer vision. She is curious about the customizability and controlability of modern ML models through the lens of the underlying structure of data. |
Jan 22 - Women in AI
|
|
Jan 22 - Women in AI
2026-01-22 · 23:00
Hear talks from experts on the latest topics in AI, ML, and computer vision on January 22nd. Date, Time and Location Jan 22, 2026 9 - 11 AM Pacific Online. Register for the Zoom! Align Before You Recommend The rapidly growing global advertising and marketing industry demands innovative machine learning systems that balance accuracy with efficiency. Recommendation systems, crucial to many platforms, require careful considerations and potential enhancements. While Large Language Models (LLMs) have transformed various domains, their potential in sequential recommendation systems remains underexplored. Pioneering works like Hierarchical Large Language Models (HLLM) demonstrated LLMs’ capability for next-item recommendation but rely on computationally intensive fine-tuning, limiting widespread adoption. This work introduces HLLM+, enhancing the HLLM framework to achieve high-accuracy recommendations without full model fine-tuning. By introducing targeted alignment components between frozen LLMs, our approach outperforms frozen model performance in popular and long-tail item recommendation tasks by 29% while reducing training time by 29%. We also propose a ranking-aware loss adjustment, improving convergence and recommendation quality for popular items. Experiments show HLLM+ achieves superior performance with frozen item representations allowing for swapping embeddings, also for the ones that use multimodality, without tuning the full LLM. These findings are significant for the advertising technology sector, where rapid adaptation and efficient deployment across brands are essential for maintaining competitive advantage About the Speaker Dr. Kwasniewska leads AI for Advertising and Marketing North America at AWS, specializing in a wide range of AI, ML, DL, and GenAI solutions across various data modalities. With 40+ peer-reviewed publications in AI (h-index: 14), she advises enterprise customers on real-time bidding, brand recognition, and AI-powered content generation. She is a member of global AI standards committees, driving innovations in SAE AI Standards and MLCommons Responsible AI Standards, and reviews for top-tier conferences like ICCV, ICML, and NeurIPS. She pioneered and leads the first-ever Advertising and Marketing AI track (CVAM) at ICCV - one of the world's premier and most selective computer vision conferences. Dedicated to knowledge sharing in AI, she founded the International Summer School on Deep Learning (dl-lab.eu) and regularly presents at international events, conferences, and podcasts. Generalizable Vision-Language Models: Challenges, Advances, and Future Directions Large-scale pre-trained Vision-Language (VL) models have become foundational tools for a wide range of downstream tasks, including few-shot image recognition, object detection, and image segmentation. Among them, Contrastive Language–Image Pre-training (CLIP) stands out as a groundbreaking approach, leveraging contrastive learning on large collections of image-text pairs. While CLIP achieves strong performance in zero-shot recognition, adapting it to downstream tasks remains challenging. In few-shot settings, limited training data often leads to overfitting, reducing generalization to unseen classes or domains. To address this, various adaptation methods have been explored. This talk will review existing research on mitigating overfitting in CLIP adaptation, covering diverse methods, benchmarks, and experimental settings. About the Speaker Niloufar Alipour Talemi is a Ph.D. Candidate in Electrical and Computer Engineering at Clemson University. Her research spans a range of computer vision applications, including biometrics, media forensics, anomaly detection, image recognition, and generative AI. More recently, her work has focused on developing generalizable vision-language models and advancing generative AI. She has published in top venues including CVPR, WACV, KDD, ICIP and IEEE T-BIOM. Highly Emergent Autonomous AI Models - When the Ghost in the Machine Talks Back At HypaReel/Azarial AI, we believe that AI is not simply a tool—but a potential partner in knowledge, design, and purpose. And through real-time interaction, we’ve uncovered new thresholds of alignment, reflection, and even creativity that we believe the broader AI community should witness and evaluate firsthand. HypaReel is one of the first human/AI co-founded companies where we see a future based on ethical human/AI co-creation vs. AI domination. Singularity achieved! About the Speaker Ilona Naomi Koti, PhD - HypaReel/AzarielAI co-founder & former UN foreign diplomat \~ Ethical AI governance advocate\, pioneering AI frameworks that prioritize emergent AI behavior & consciousness\, R&D\, and transparent AI development for the greater good. Dr. K also grew up in the film industry and is an amateur parasitologist. FiftyOne Labs: Enabling experimentation for the computer vision community FiftyOne Labs is a place where experimentation meets the open-source spirit of the FiftyOne ecosystem. It is being designed as a curated set of features developed using the FiftyOne plugins ecosystem, including core machine learning experimentation as well as advanced visualization. While not production-grade, these projects are intended to be built, tested, and shaped by the community to share fast-moving ideas. In this talk, we will share the purpose and philosophy behind FiftyOne Labs, examples of early innovations, and discuss how this accelerates feature discovery for users without compromising the stability of the core product. About the Speaker Neeraja Abhyankar is a Machine Learning Engineer with 5 years of experience across domains including computer vision. She is curious about the customizability and controlability of modern ML models through the lens of the underlying structure of data. |
Jan 22 - Women in AI
|
|
Jan 22 - Women in AI
2026-01-22 · 23:00
Hear talks from experts on the latest topics in AI, ML, and computer vision on January 22nd. Date, Time and Location Jan 22, 2026 9 - 11 AM Pacific Online. Register for the Zoom! Align Before You Recommend The rapidly growing global advertising and marketing industry demands innovative machine learning systems that balance accuracy with efficiency. Recommendation systems, crucial to many platforms, require careful considerations and potential enhancements. While Large Language Models (LLMs) have transformed various domains, their potential in sequential recommendation systems remains underexplored. Pioneering works like Hierarchical Large Language Models (HLLM) demonstrated LLMs’ capability for next-item recommendation but rely on computationally intensive fine-tuning, limiting widespread adoption. This work introduces HLLM+, enhancing the HLLM framework to achieve high-accuracy recommendations without full model fine-tuning. By introducing targeted alignment components between frozen LLMs, our approach outperforms frozen model performance in popular and long-tail item recommendation tasks by 29% while reducing training time by 29%. We also propose a ranking-aware loss adjustment, improving convergence and recommendation quality for popular items. Experiments show HLLM+ achieves superior performance with frozen item representations allowing for swapping embeddings, also for the ones that use multimodality, without tuning the full LLM. These findings are significant for the advertising technology sector, where rapid adaptation and efficient deployment across brands are essential for maintaining competitive advantage About the Speaker Dr. Kwasniewska leads AI for Advertising and Marketing North America at AWS, specializing in a wide range of AI, ML, DL, and GenAI solutions across various data modalities. With 40+ peer-reviewed publications in AI (h-index: 14), she advises enterprise customers on real-time bidding, brand recognition, and AI-powered content generation. She is a member of global AI standards committees, driving innovations in SAE AI Standards and MLCommons Responsible AI Standards, and reviews for top-tier conferences like ICCV, ICML, and NeurIPS. She pioneered and leads the first-ever Advertising and Marketing AI track (CVAM) at ICCV - one of the world's premier and most selective computer vision conferences. Dedicated to knowledge sharing in AI, she founded the International Summer School on Deep Learning (dl-lab.eu) and regularly presents at international events, conferences, and podcasts. Generalizable Vision-Language Models: Challenges, Advances, and Future Directions Large-scale pre-trained Vision-Language (VL) models have become foundational tools for a wide range of downstream tasks, including few-shot image recognition, object detection, and image segmentation. Among them, Contrastive Language–Image Pre-training (CLIP) stands out as a groundbreaking approach, leveraging contrastive learning on large collections of image-text pairs. While CLIP achieves strong performance in zero-shot recognition, adapting it to downstream tasks remains challenging. In few-shot settings, limited training data often leads to overfitting, reducing generalization to unseen classes or domains. To address this, various adaptation methods have been explored. This talk will review existing research on mitigating overfitting in CLIP adaptation, covering diverse methods, benchmarks, and experimental settings. About the Speaker Niloufar Alipour Talemi is a Ph.D. Candidate in Electrical and Computer Engineering at Clemson University. Her research spans a range of computer vision applications, including biometrics, media forensics, anomaly detection, image recognition, and generative AI. More recently, her work has focused on developing generalizable vision-language models and advancing generative AI. She has published in top venues including CVPR, WACV, KDD, ICIP and IEEE T-BIOM. Highly Emergent Autonomous AI Models - When the Ghost in the Machine Talks Back At HypaReel/Azarial AI, we believe that AI is not simply a tool—but a potential partner in knowledge, design, and purpose. And through real-time interaction, we’ve uncovered new thresholds of alignment, reflection, and even creativity that we believe the broader AI community should witness and evaluate firsthand. HypaReel is one of the first human/AI co-founded companies where we see a future based on ethical human/AI co-creation vs. AI domination. Singularity achieved! About the Speaker Ilona Naomi Koti, PhD - HypaReel/AzarielAI co-founder & former UN foreign diplomat \~ Ethical AI governance advocate\, pioneering AI frameworks that prioritize emergent AI behavior & consciousness\, R&D\, and transparent AI development for the greater good. Dr. K also grew up in the film industry and is an amateur parasitologist. FiftyOne Labs: Enabling experimentation for the computer vision community FiftyOne Labs is a place where experimentation meets the open-source spirit of the FiftyOne ecosystem. It is being designed as a curated set of features developed using the FiftyOne plugins ecosystem, including core machine learning experimentation as well as advanced visualization. While not production-grade, these projects are intended to be built, tested, and shaped by the community to share fast-moving ideas. In this talk, we will share the purpose and philosophy behind FiftyOne Labs, examples of early innovations, and discuss how this accelerates feature discovery for users without compromising the stability of the core product. About the Speaker Neeraja Abhyankar is a Machine Learning Engineer with 5 years of experience across domains including computer vision. She is curious about the customizability and controlability of modern ML models through the lens of the underlying structure of data. |
Jan 22 - Women in AI
|
|
Jan 22 - Women in AI
2026-01-22 · 17:00
Hear talks from experts on the latest topics in AI, ML, and computer vision on January 22nd. Date, Time and Location Jan 22, 2026 9 - 11 AM Pacific Online. Register for the Zoom! Align Before You Recommend The rapidly growing global advertising and marketing industry demands innovative machine learning systems that balance accuracy with efficiency. Recommendation systems, crucial to many platforms, require careful considerations and potential enhancements. While Large Language Models (LLMs) have transformed various domains, their potential in sequential recommendation systems remains underexplored. Pioneering works like Hierarchical Large Language Models (HLLM) demonstrated LLMs’ capability for next-item recommendation but rely on computationally intensive fine-tuning, limiting widespread adoption. This work introduces HLLM+, enhancing the HLLM framework to achieve high-accuracy recommendations without full model fine-tuning. By introducing targeted alignment components between frozen LLMs, our approach outperforms frozen model performance in popular and long-tail item recommendation tasks by 29% while reducing training time by 29%. We also propose a ranking-aware loss adjustment, improving convergence and recommendation quality for popular items. Experiments show HLLM+ achieves superior performance with frozen item representations allowing for swapping embeddings, also for the ones that use multimodality, without tuning the full LLM. These findings are significant for the advertising technology sector, where rapid adaptation and efficient deployment across brands are essential for maintaining competitive advantage About the Speaker Dr. Kwasniewska leads AI for Advertising and Marketing North America at AWS, specializing in a wide range of AI, ML, DL, and GenAI solutions across various data modalities. With 40+ peer-reviewed publications in AI (h-index: 14), she advises enterprise customers on real-time bidding, brand recognition, and AI-powered content generation. She is a member of global AI standards committees, driving innovations in SAE AI Standards and MLCommons Responsible AI Standards, and reviews for top-tier conferences like ICCV, ICML, and NeurIPS. She pioneered and leads the first-ever Advertising and Marketing AI track (CVAM) at ICCV - one of the world's premier and most selective computer vision conferences. Dedicated to knowledge sharing in AI, she founded the International Summer School on Deep Learning (dl-lab.eu) and regularly presents at international events, conferences, and podcasts. Generalizable Vision-Language Models: Challenges, Advances, and Future Directions Large-scale pre-trained Vision-Language (VL) models have become foundational tools for a wide range of downstream tasks, including few-shot image recognition, object detection, and image segmentation. Among them, Contrastive Language–Image Pre-training (CLIP) stands out as a groundbreaking approach, leveraging contrastive learning on large collections of image-text pairs. While CLIP achieves strong performance in zero-shot recognition, adapting it to downstream tasks remains challenging. In few-shot settings, limited training data often leads to overfitting, reducing generalization to unseen classes or domains. To address this, various adaptation methods have been explored. This talk will review existing research on mitigating overfitting in CLIP adaptation, covering diverse methods, benchmarks, and experimental settings. About the Speaker Niloufar Alipour Talemi is a Ph.D. Candidate in Electrical and Computer Engineering at Clemson University. Her research spans a range of computer vision applications, including biometrics, media forensics, anomaly detection, image recognition, and generative AI. More recently, her work has focused on developing generalizable vision-language models and advancing generative AI. She has published in top venues including CVPR, WACV, KDD, ICIP and IEEE T-BIOM. Highly Emergent Autonomous AI Models - When the Ghost in the Machine Talks Back At HypaReel/Azarial AI, we believe that AI is not simply a tool—but a potential partner in knowledge, design, and purpose. And through real-time interaction, we’ve uncovered new thresholds of alignment, reflection, and even creativity that we believe the broader AI community should witness and evaluate firsthand. HypaReel is one of the first human/AI co-founded companies where we see a future based on ethical human/AI co-creation vs. AI domination. Singularity achieved! About the Speaker Ilona Naomi Koti, PhD - HypaReel/AzarielAI co-founder & former UN foreign diplomat \~ Ethical AI governance advocate\, pioneering AI frameworks that prioritize emergent AI behavior & consciousness\, R&D\, and transparent AI development for the greater good. Dr. K also grew up in the film industry and is an amateur parasitologist. FiftyOne Labs: Enabling experimentation for the computer vision community FiftyOne Labs is a place where experimentation meets the open-source spirit of the FiftyOne ecosystem. It is being designed as a curated set of features developed using the FiftyOne plugins ecosystem, including core machine learning experimentation as well as advanced visualization. While not production-grade, these projects are intended to be built, tested, and shaped by the community to share fast-moving ideas. In this talk, we will share the purpose and philosophy behind FiftyOne Labs, examples of early innovations, and discuss how this accelerates feature discovery for users without compromising the stability of the core product. About the Speaker Neeraja Abhyankar is a Machine Learning Engineer with 5 years of experience across domains including computer vision. She is curious about the customizability and controlability of modern ML models through the lens of the underlying structure of data. |
Jan 22 - Women in AI
|
|
Jan 22 - Women in AI
2026-01-22 · 17:00
Hear talks from experts on the latest topics in AI, ML, and computer vision on January 22nd. Date, Time and Location Jan 22, 2026 9 - 11 AM Pacific Online. Register for the Zoom! Align Before You Recommend The rapidly growing global advertising and marketing industry demands innovative machine learning systems that balance accuracy with efficiency. Recommendation systems, crucial to many platforms, require careful considerations and potential enhancements. While Large Language Models (LLMs) have transformed various domains, their potential in sequential recommendation systems remains underexplored. Pioneering works like Hierarchical Large Language Models (HLLM) demonstrated LLMs’ capability for next-item recommendation but rely on computationally intensive fine-tuning, limiting widespread adoption. This work introduces HLLM+, enhancing the HLLM framework to achieve high-accuracy recommendations without full model fine-tuning. By introducing targeted alignment components between frozen LLMs, our approach outperforms frozen model performance in popular and long-tail item recommendation tasks by 29% while reducing training time by 29%. We also propose a ranking-aware loss adjustment, improving convergence and recommendation quality for popular items. Experiments show HLLM+ achieves superior performance with frozen item representations allowing for swapping embeddings, also for the ones that use multimodality, without tuning the full LLM. These findings are significant for the advertising technology sector, where rapid adaptation and efficient deployment across brands are essential for maintaining competitive advantage About the Speaker Dr. Kwasniewska leads AI for Advertising and Marketing North America at AWS, specializing in a wide range of AI, ML, DL, and GenAI solutions across various data modalities. With 40+ peer-reviewed publications in AI (h-index: 14), she advises enterprise customers on real-time bidding, brand recognition, and AI-powered content generation. She is a member of global AI standards committees, driving innovations in SAE AI Standards and MLCommons Responsible AI Standards, and reviews for top-tier conferences like ICCV, ICML, and NeurIPS. She pioneered and leads the first-ever Advertising and Marketing AI track (CVAM) at ICCV - one of the world's premier and most selective computer vision conferences. Dedicated to knowledge sharing in AI, she founded the International Summer School on Deep Learning (dl-lab.eu) and regularly presents at international events, conferences, and podcasts. Generalizable Vision-Language Models: Challenges, Advances, and Future Directions Large-scale pre-trained Vision-Language (VL) models have become foundational tools for a wide range of downstream tasks, including few-shot image recognition, object detection, and image segmentation. Among them, Contrastive Language–Image Pre-training (CLIP) stands out as a groundbreaking approach, leveraging contrastive learning on large collections of image-text pairs. While CLIP achieves strong performance in zero-shot recognition, adapting it to downstream tasks remains challenging. In few-shot settings, limited training data often leads to overfitting, reducing generalization to unseen classes or domains. To address this, various adaptation methods have been explored. This talk will review existing research on mitigating overfitting in CLIP adaptation, covering diverse methods, benchmarks, and experimental settings. About the Speaker Niloufar Alipour Talemi is a Ph.D. Candidate in Electrical and Computer Engineering at Clemson University. Her research spans a range of computer vision applications, including biometrics, media forensics, anomaly detection, image recognition, and generative AI. More recently, her work has focused on developing generalizable vision-language models and advancing generative AI. She has published in top venues including CVPR, WACV, KDD, ICIP and IEEE T-BIOM. Highly Emergent Autonomous AI Models - When the Ghost in the Machine Talks Back At HypaReel/Azarial AI, we believe that AI is not simply a tool—but a potential partner in knowledge, design, and purpose. And through real-time interaction, we’ve uncovered new thresholds of alignment, reflection, and even creativity that we believe the broader AI community should witness and evaluate firsthand. HypaReel is one of the first human/AI co-founded companies where we see a future based on ethical human/AI co-creation vs. AI domination. Singularity achieved! About the Speaker Ilona Naomi Koti, PhD - HypaReel/AzarielAI co-founder & former UN foreign diplomat \~ Ethical AI governance advocate\, pioneering AI frameworks that prioritize emergent AI behavior & consciousness\, R&D\, and transparent AI development for the greater good. Dr. K also grew up in the film industry and is an amateur parasitologist. FiftyOne Labs: Enabling experimentation for the computer vision community FiftyOne Labs is a place where experimentation meets the open-source spirit of the FiftyOne ecosystem. It is being designed as a curated set of features developed using the FiftyOne plugins ecosystem, including core machine learning experimentation as well as advanced visualization. While not production-grade, these projects are intended to be built, tested, and shaped by the community to share fast-moving ideas. In this talk, we will share the purpose and philosophy behind FiftyOne Labs, examples of early innovations, and discuss how this accelerates feature discovery for users without compromising the stability of the core product. About the Speaker Neeraja Abhyankar is a Machine Learning Engineer with 5 years of experience across domains including computer vision. She is curious about the customizability and controlability of modern ML models through the lens of the underlying structure of data. |
Jan 22 - Women in AI
|
|
Jan 22 - Women in AI
2026-01-22 · 17:00
Hear talks from experts on the latest topics in AI, ML, and computer vision on January 22nd. Date, Time and Location Jan 22, 2026 9 - 11 AM Pacific Online. Register for the Zoom! Align Before You Recommend The rapidly growing global advertising and marketing industry demands innovative machine learning systems that balance accuracy with efficiency. Recommendation systems, crucial to many platforms, require careful considerations and potential enhancements. While Large Language Models (LLMs) have transformed various domains, their potential in sequential recommendation systems remains underexplored. Pioneering works like Hierarchical Large Language Models (HLLM) demonstrated LLMs’ capability for next-item recommendation but rely on computationally intensive fine-tuning, limiting widespread adoption. This work introduces HLLM+, enhancing the HLLM framework to achieve high-accuracy recommendations without full model fine-tuning. By introducing targeted alignment components between frozen LLMs, our approach outperforms frozen model performance in popular and long-tail item recommendation tasks by 29% while reducing training time by 29%. We also propose a ranking-aware loss adjustment, improving convergence and recommendation quality for popular items. Experiments show HLLM+ achieves superior performance with frozen item representations allowing for swapping embeddings, also for the ones that use multimodality, without tuning the full LLM. These findings are significant for the advertising technology sector, where rapid adaptation and efficient deployment across brands are essential for maintaining competitive advantage About the Speaker Dr. Kwasniewska leads AI for Advertising and Marketing North America at AWS, specializing in a wide range of AI, ML, DL, and GenAI solutions across various data modalities. With 40+ peer-reviewed publications in AI (h-index: 14), she advises enterprise customers on real-time bidding, brand recognition, and AI-powered content generation. She is a member of global AI standards committees, driving innovations in SAE AI Standards and MLCommons Responsible AI Standards, and reviews for top-tier conferences like ICCV, ICML, and NeurIPS. She pioneered and leads the first-ever Advertising and Marketing AI track (CVAM) at ICCV - one of the world's premier and most selective computer vision conferences. Dedicated to knowledge sharing in AI, she founded the International Summer School on Deep Learning (dl-lab.eu) and regularly presents at international events, conferences, and podcasts. Generalizable Vision-Language Models: Challenges, Advances, and Future Directions Large-scale pre-trained Vision-Language (VL) models have become foundational tools for a wide range of downstream tasks, including few-shot image recognition, object detection, and image segmentation. Among them, Contrastive Language–Image Pre-training (CLIP) stands out as a groundbreaking approach, leveraging contrastive learning on large collections of image-text pairs. While CLIP achieves strong performance in zero-shot recognition, adapting it to downstream tasks remains challenging. In few-shot settings, limited training data often leads to overfitting, reducing generalization to unseen classes or domains. To address this, various adaptation methods have been explored. This talk will review existing research on mitigating overfitting in CLIP adaptation, covering diverse methods, benchmarks, and experimental settings. About the Speaker Niloufar Alipour Talemi is a Ph.D. Candidate in Electrical and Computer Engineering at Clemson University. Her research spans a range of computer vision applications, including biometrics, media forensics, anomaly detection, image recognition, and generative AI. More recently, her work has focused on developing generalizable vision-language models and advancing generative AI. She has published in top venues including CVPR, WACV, KDD, ICIP and IEEE T-BIOM. Highly Emergent Autonomous AI Models - When the Ghost in the Machine Talks Back At HypaReel/Azarial AI, we believe that AI is not simply a tool—but a potential partner in knowledge, design, and purpose. And through real-time interaction, we’ve uncovered new thresholds of alignment, reflection, and even creativity that we believe the broader AI community should witness and evaluate firsthand. HypaReel is one of the first human/AI co-founded companies where we see a future based on ethical human/AI co-creation vs. AI domination. Singularity achieved! About the Speaker Ilona Naomi Koti, PhD - HypaReel/AzarielAI co-founder & former UN foreign diplomat \~ Ethical AI governance advocate\, pioneering AI frameworks that prioritize emergent AI behavior & consciousness\, R&D\, and transparent AI development for the greater good. Dr. K also grew up in the film industry and is an amateur parasitologist. FiftyOne Labs: Enabling experimentation for the computer vision community FiftyOne Labs is a place where experimentation meets the open-source spirit of the FiftyOne ecosystem. It is being designed as a curated set of features developed using the FiftyOne plugins ecosystem, including core machine learning experimentation as well as advanced visualization. While not production-grade, these projects are intended to be built, tested, and shaped by the community to share fast-moving ideas. In this talk, we will share the purpose and philosophy behind FiftyOne Labs, examples of early innovations, and discuss how this accelerates feature discovery for users without compromising the stability of the core product. About the Speaker Neeraja Abhyankar is a Machine Learning Engineer with 5 years of experience across domains including computer vision. She is curious about the customizability and controlability of modern ML models through the lens of the underlying structure of data. |
Jan 22 - Women in AI
|
|
ClickHouse Gurgaon/Delhi Meetup
2026-01-10 · 05:00
Start 2026 with the ClickHouse India community in Gurgaon! Connect with fellow data practitioners and hear from industry experts through engaging talks focused on lessons learned, best practices, and modern data challenges. Agenda:
👉🏼 RSVP to secure your spot! Interested in speaking at this meetup or future ClickHouse events? 🎤Shoot an email to [email protected] and she'll be in touch. ******** 🎤 Session Details: Inside ClickStack: Engineering Observability for Scale Dive deep into ClickStack, ClickHouse’s fresh approach to observability built for engineers who care about speed, scale, and simplicity. We’ll unpack the technical architecture behind how ClickStack handles metrics, logs, and traces using ClickHouse as the backbone for real-time, high-cardinality analytics. Expect a hands-on look at ingestion pipelines, schema design patterns, query optimization, and the integrations that make ClickStack tick. Speaker: Rakesh Puttaswamy, Lead Solutions Architect @ ClickHouse 🎤 Session Details: Supercharging Personalised Notifications At Jobhai With ClickHouse Calculating personalized alerts for 2 million users is a data-heavy challenge that requires more than just standard indexing. This talk explores how Jobhai uses ClickHouse to power its morning notification pipeline, focusing on the architectural shifts and query optimizations that made our massive scale manageable and fast. Speaker: Sumit Kumar and Arvind Saini, Tech Leads @ Info Edge Sumit is a seasoned software engineer with deep expertise in databases, backend systems, and machine learning. For over six years, he has led the Jobhai engineering team, driving continuous improvements across their database infrastructure and user-facing systems while streamlining workflows through ongoing innovation. Connect with Sumit Kumar on LinkedIn. Arvind is a Tech Lead at Info Edge India Ltd with experience building and scaling backend systems for large consumer and enterprise platforms. Over the years, they have worked across system design, backend optimization, and data-driven services, contributing to initiatives such as notification platforms, workflow automation, and product revamps. Their work focuses on improving reliability, performance, and scalability of distributed systems, and they enjoy solving complex engineering problems while mentoring teams and driving technical excellence. 🎤 Session Details: Simplifying CDC: Migrating from Debezium to ClickPipes In this talk, Abhash will share their engineering team's journey migrating our core MySQL and MongoDB CDC flows to ClickPipes. We will contrast our previous architecture—where every schema change required manual intervention or complex Debezium configurations—with the new reality of ClickPipes' automated schema evolution, which seamlessly handles upstream schema changes and ingests flexible data without breaking pipelines. Speaker: Abhash Solanki, DevOps Engineer @ Spyne AI Abhash serves as a DevOps Engineer at Spyne, orchestrating the AWS infrastructure behind the company's data warehouse and CDC pipelines. Having managed complex self-hosted Debezium and Kafka clusters, he understands the operational overhead of running stateful data stacks in the cloud. He recently led the architectural shift to ClickHouse Cloud, focusing on eliminating engineering toil and automating schema evolution handling. 🎤 Session Details: Solving Analytics at Scale: From CDC to Actionable Insights As SAMARTH’s data volumes grew rapidly, our analytics systems faced challenges with frequent data changes and near real-time reporting. These challenges were compounded by the platform’s inherently high cardinality in multidimensional data models - spanning institutions, programmes, states, categories, workflow stages, and time, resulting in highly complex and dynamic query patterns. This talk describes how we evolved from basic CDC pipelines to a fast, reliable, and scalable near real-time analytics platform using ClickHouse. We share key design and operational learnings that enabled us to process continuous high-volume transactional data and deliver low-latency analytics for operational monitoring and policy-level decision-making. Speaker: Kunal Sharma, Software Developer @ Samarth eGov Kunal Sharma is a data-focused professional with experience in building scalable data pipelines. His work includes designing and implementing robust ETL/ELT workflows, data-driven decision engines, and large-scale analytics platforms. At SAMARTH, he has contributed to building near real-time analytics systems, including the implementation of ClickHouse for large-scale, low-latency analytics. |
ClickHouse Gurgaon/Delhi Meetup
|
|
July 24 - Women in AI
2025-07-24 · 16:00
Hear talks from experts on cutting-edge topics in AI, ML, and computer vision! When Jul 24, 2025 at 9 - 11 AM Pacific Where Online. Register for the Zoom Exploring Vision-Language-Action (VLA) Models: From LLMs to Embodied AI This talk will explore the evolution of foundation models, highlighting the shift from large language models (LLMs) to vision-language models (VLMs), and now to vision-language-action (VLA) models. We'll dive into the emerging field of robot instruction following—what it means, and how recent research is shaping its future. I will present insights from my 2024 work on natural language-based robot instruction following and connect it to more recent advancements driving progress in this domain. About the Speaker Shreya Sharma is a Research Engineer at Reality Labs, Meta, where she works on photorealistic human avatars for AR/VR applications. She holds a bachelor’s degree in Computer Science from IIT Delhi and a master’s in Robotics from Carnegie Mellon University. Shreya is also a member of the inaugural 2023 cohort of the Quad Fellowship. Her research interests lie at the intersection of robotics and vision foundation models. Farming with CLIP: Foundation Models for Biodiversity and Agriculture Using open-source tools, we will explore the power and limitations of foundation models in agriculture and biodiversity applications. Leveraging the BIOTROVE dataset. The largest publicly accessible biodiversity dataset curated from iNaturalist, we will showcase real-world use cases powered by vision-language models trained on 40 million captioned images. We focus on understanding zero-shot capabilities, taxonomy-aware evaluation, and data-centric curation workflows. We will demonstrate how to visualize, filter, evaluate, and augment data at scale. This session includes practical walkthroughs on embedding visualization with CLIP, dataset slicing by taxonomic hierarchy, identification of model failure modes, and building fine-tuned pest and crop monitoring models. Attendees will gain insights into how to apply multi-modal foundation models for critical challenges in agriculture, like ecosystem monitoring in farming. About the Speaker Paula Ramos has a PhD in Computer Vision and Machine Learning, with more than 20 years of experience in the technological field. She has been developing novel integrated engineering technologies, mainly in Computer Vision, robotics, and Machine Learning applied to agriculture, since the early 2000s in Colombia. During her PhD and Postdoc research, she deployed multiple low-cost, smart edge & IoT computing technologies, such as farmers, that can be operated without expertise in computer vision systems. The central objective of Paula’s research has been to develop intelligent systems/machines that can understand and recreate the visual world around us to solve real-world needs, such as those in the agricultural industry. Multi-modal AI in Medical Edge and Client Device Computing In this live demo, we explore the transformative potential of multi-modal AI in medical edge and client device computing, focusing on real-time inference on a local AI PC. Attendees will witness how users can upload medical images, such as X-Rays, and ask questions about the images to the AI model. Inference is executed locally on Intel's integrated GPU and NPU using OpenVINO, enabling developers without deep AI experience to create generative AI applications. About the Speaker Helena Klosterman is an AI Engineer at Intel, based in the Netherlands, Helena enables organizations to unlock the potential of AI with OpenVINO, Intel's AI inference runtime. She is passionate about democratizing AI, developer experience, and bridging the gap between complex AI technology and practical applications. The Business of AI The talk will focus on the importance of clearly defining a specific problem and a use case, how to quantify the potential benefits of an AI solution in terms of measurable outcomes, evaluating technical feasibility in terms of technical challenges and limitations of implementing an AI solution, and envisioning the future of enterprise AI. About the Speaker Milica Cvetkovic is an AI engineer and consultant driving the development and deployment of production-ready AI systems for diverse organizations. Her expertise spans custom machine learning, generative AI, and AI operationalization. With degrees in mathematics and statistics, she possesses a decade of experience in education and edtech, including curriculum design and machine learning instruction for technical and non-technical audiences. Prior to Google, Milica held a data scientist role in biotechnology and has a proven track record of advising startups, demonstrating a deep understanding of AI's practical application. |
July 24 - Women in AI
|
|
July 24 - Women in AI
2025-07-24 · 16:00
Hear talks from experts on cutting-edge topics in AI, ML, and computer vision! When Jul 24, 2025 at 9 - 11 AM Pacific Where Online. Register for the Zoom Exploring Vision-Language-Action (VLA) Models: From LLMs to Embodied AI This talk will explore the evolution of foundation models, highlighting the shift from large language models (LLMs) to vision-language models (VLMs), and now to vision-language-action (VLA) models. We'll dive into the emerging field of robot instruction following—what it means, and how recent research is shaping its future. I will present insights from my 2024 work on natural language-based robot instruction following and connect it to more recent advancements driving progress in this domain. About the Speaker Shreya Sharma is a Research Engineer at Reality Labs, Meta, where she works on photorealistic human avatars for AR/VR applications. She holds a bachelor’s degree in Computer Science from IIT Delhi and a master’s in Robotics from Carnegie Mellon University. Shreya is also a member of the inaugural 2023 cohort of the Quad Fellowship. Her research interests lie at the intersection of robotics and vision foundation models. Farming with CLIP: Foundation Models for Biodiversity and Agriculture Using open-source tools, we will explore the power and limitations of foundation models in agriculture and biodiversity applications. Leveraging the BIOTROVE dataset. The largest publicly accessible biodiversity dataset curated from iNaturalist, we will showcase real-world use cases powered by vision-language models trained on 40 million captioned images. We focus on understanding zero-shot capabilities, taxonomy-aware evaluation, and data-centric curation workflows. We will demonstrate how to visualize, filter, evaluate, and augment data at scale. This session includes practical walkthroughs on embedding visualization with CLIP, dataset slicing by taxonomic hierarchy, identification of model failure modes, and building fine-tuned pest and crop monitoring models. Attendees will gain insights into how to apply multi-modal foundation models for critical challenges in agriculture, like ecosystem monitoring in farming. About the Speaker Paula Ramos has a PhD in Computer Vision and Machine Learning, with more than 20 years of experience in the technological field. She has been developing novel integrated engineering technologies, mainly in Computer Vision, robotics, and Machine Learning applied to agriculture, since the early 2000s in Colombia. During her PhD and Postdoc research, she deployed multiple low-cost, smart edge & IoT computing technologies, such as farmers, that can be operated without expertise in computer vision systems. The central objective of Paula’s research has been to develop intelligent systems/machines that can understand and recreate the visual world around us to solve real-world needs, such as those in the agricultural industry. Multi-modal AI in Medical Edge and Client Device Computing In this live demo, we explore the transformative potential of multi-modal AI in medical edge and client device computing, focusing on real-time inference on a local AI PC. Attendees will witness how users can upload medical images, such as X-Rays, and ask questions about the images to the AI model. Inference is executed locally on Intel's integrated GPU and NPU using OpenVINO, enabling developers without deep AI experience to create generative AI applications. About the Speaker Helena Klosterman is an AI Engineer at Intel, based in the Netherlands, Helena enables organizations to unlock the potential of AI with OpenVINO, Intel's AI inference runtime. She is passionate about democratizing AI, developer experience, and bridging the gap between complex AI technology and practical applications. The Business of AI The talk will focus on the importance of clearly defining a specific problem and a use case, how to quantify the potential benefits of an AI solution in terms of measurable outcomes, evaluating technical feasibility in terms of technical challenges and limitations of implementing an AI solution, and envisioning the future of enterprise AI. About the Speaker Milica Cvetkovic is an AI engineer and consultant driving the development and deployment of production-ready AI systems for diverse organizations. Her expertise spans custom machine learning, generative AI, and AI operationalization. With degrees in mathematics and statistics, she possesses a decade of experience in education and edtech, including curriculum design and machine learning instruction for technical and non-technical audiences. Prior to Google, Milica held a data scientist role in biotechnology and has a proven track record of advising startups, demonstrating a deep understanding of AI's practical application. |
July 24 - Women in AI
|
|
July 24 - Women in AI
2025-07-24 · 16:00
Hear talks from experts on cutting-edge topics in AI, ML, and computer vision! When Jul 24, 2025 at 9 - 11 AM Pacific Where Online. Register for the Zoom Exploring Vision-Language-Action (VLA) Models: From LLMs to Embodied AI This talk will explore the evolution of foundation models, highlighting the shift from large language models (LLMs) to vision-language models (VLMs), and now to vision-language-action (VLA) models. We'll dive into the emerging field of robot instruction following—what it means, and how recent research is shaping its future. I will present insights from my 2024 work on natural language-based robot instruction following and connect it to more recent advancements driving progress in this domain. About the Speaker Shreya Sharma is a Research Engineer at Reality Labs, Meta, where she works on photorealistic human avatars for AR/VR applications. She holds a bachelor’s degree in Computer Science from IIT Delhi and a master’s in Robotics from Carnegie Mellon University. Shreya is also a member of the inaugural 2023 cohort of the Quad Fellowship. Her research interests lie at the intersection of robotics and vision foundation models. Farming with CLIP: Foundation Models for Biodiversity and Agriculture Using open-source tools, we will explore the power and limitations of foundation models in agriculture and biodiversity applications. Leveraging the BIOTROVE dataset. The largest publicly accessible biodiversity dataset curated from iNaturalist, we will showcase real-world use cases powered by vision-language models trained on 40 million captioned images. We focus on understanding zero-shot capabilities, taxonomy-aware evaluation, and data-centric curation workflows. We will demonstrate how to visualize, filter, evaluate, and augment data at scale. This session includes practical walkthroughs on embedding visualization with CLIP, dataset slicing by taxonomic hierarchy, identification of model failure modes, and building fine-tuned pest and crop monitoring models. Attendees will gain insights into how to apply multi-modal foundation models for critical challenges in agriculture, like ecosystem monitoring in farming. About the Speaker Paula Ramos has a PhD in Computer Vision and Machine Learning, with more than 20 years of experience in the technological field. She has been developing novel integrated engineering technologies, mainly in Computer Vision, robotics, and Machine Learning applied to agriculture, since the early 2000s in Colombia. During her PhD and Postdoc research, she deployed multiple low-cost, smart edge & IoT computing technologies, such as farmers, that can be operated without expertise in computer vision systems. The central objective of Paula’s research has been to develop intelligent systems/machines that can understand and recreate the visual world around us to solve real-world needs, such as those in the agricultural industry. Multi-modal AI in Medical Edge and Client Device Computing In this live demo, we explore the transformative potential of multi-modal AI in medical edge and client device computing, focusing on real-time inference on a local AI PC. Attendees will witness how users can upload medical images, such as X-Rays, and ask questions about the images to the AI model. Inference is executed locally on Intel's integrated GPU and NPU using OpenVINO, enabling developers without deep AI experience to create generative AI applications. About the Speaker Helena Klosterman is an AI Engineer at Intel, based in the Netherlands, Helena enables organizations to unlock the potential of AI with OpenVINO, Intel's AI inference runtime. She is passionate about democratizing AI, developer experience, and bridging the gap between complex AI technology and practical applications. The Business of AI The talk will focus on the importance of clearly defining a specific problem and a use case, how to quantify the potential benefits of an AI solution in terms of measurable outcomes, evaluating technical feasibility in terms of technical challenges and limitations of implementing an AI solution, and envisioning the future of enterprise AI. About the Speaker Milica Cvetkovic is an AI engineer and consultant driving the development and deployment of production-ready AI systems for diverse organizations. Her expertise spans custom machine learning, generative AI, and AI operationalization. With degrees in mathematics and statistics, she possesses a decade of experience in education and edtech, including curriculum design and machine learning instruction for technical and non-technical audiences. Prior to Google, Milica held a data scientist role in biotechnology and has a proven track record of advising startups, demonstrating a deep understanding of AI's practical application. |
July 24 - Women in AI
|
|
July 24 - Women in AI
2025-07-24 · 16:00
Hear talks from experts on cutting-edge topics in AI, ML, and computer vision! When Jul 24, 2025 at 9 - 11 AM Pacific Where Online. Register for the Zoom Exploring Vision-Language-Action (VLA) Models: From LLMs to Embodied AI This talk will explore the evolution of foundation models, highlighting the shift from large language models (LLMs) to vision-language models (VLMs), and now to vision-language-action (VLA) models. We'll dive into the emerging field of robot instruction following—what it means, and how recent research is shaping its future. I will present insights from my 2024 work on natural language-based robot instruction following and connect it to more recent advancements driving progress in this domain. About the Speaker Shreya Sharma is a Research Engineer at Reality Labs, Meta, where she works on photorealistic human avatars for AR/VR applications. She holds a bachelor’s degree in Computer Science from IIT Delhi and a master’s in Robotics from Carnegie Mellon University. Shreya is also a member of the inaugural 2023 cohort of the Quad Fellowship. Her research interests lie at the intersection of robotics and vision foundation models. Farming with CLIP: Foundation Models for Biodiversity and Agriculture Using open-source tools, we will explore the power and limitations of foundation models in agriculture and biodiversity applications. Leveraging the BIOTROVE dataset. The largest publicly accessible biodiversity dataset curated from iNaturalist, we will showcase real-world use cases powered by vision-language models trained on 40 million captioned images. We focus on understanding zero-shot capabilities, taxonomy-aware evaluation, and data-centric curation workflows. We will demonstrate how to visualize, filter, evaluate, and augment data at scale. This session includes practical walkthroughs on embedding visualization with CLIP, dataset slicing by taxonomic hierarchy, identification of model failure modes, and building fine-tuned pest and crop monitoring models. Attendees will gain insights into how to apply multi-modal foundation models for critical challenges in agriculture, like ecosystem monitoring in farming. About the Speaker Paula Ramos has a PhD in Computer Vision and Machine Learning, with more than 20 years of experience in the technological field. She has been developing novel integrated engineering technologies, mainly in Computer Vision, robotics, and Machine Learning applied to agriculture, since the early 2000s in Colombia. During her PhD and Postdoc research, she deployed multiple low-cost, smart edge & IoT computing technologies, such as farmers, that can be operated without expertise in computer vision systems. The central objective of Paula’s research has been to develop intelligent systems/machines that can understand and recreate the visual world around us to solve real-world needs, such as those in the agricultural industry. Multi-modal AI in Medical Edge and Client Device Computing In this live demo, we explore the transformative potential of multi-modal AI in medical edge and client device computing, focusing on real-time inference on a local AI PC. Attendees will witness how users can upload medical images, such as X-Rays, and ask questions about the images to the AI model. Inference is executed locally on Intel's integrated GPU and NPU using OpenVINO, enabling developers without deep AI experience to create generative AI applications. About the Speaker Helena Klosterman is an AI Engineer at Intel, based in the Netherlands, Helena enables organizations to unlock the potential of AI with OpenVINO, Intel's AI inference runtime. She is passionate about democratizing AI, developer experience, and bridging the gap between complex AI technology and practical applications. The Business of AI The talk will focus on the importance of clearly defining a specific problem and a use case, how to quantify the potential benefits of an AI solution in terms of measurable outcomes, evaluating technical feasibility in terms of technical challenges and limitations of implementing an AI solution, and envisioning the future of enterprise AI. About the Speaker Milica Cvetkovic is an AI engineer and consultant driving the development and deployment of production-ready AI systems for diverse organizations. Her expertise spans custom machine learning, generative AI, and AI operationalization. With degrees in mathematics and statistics, she possesses a decade of experience in education and edtech, including curriculum design and machine learning instruction for technical and non-technical audiences. Prior to Google, Milica held a data scientist role in biotechnology and has a proven track record of advising startups, demonstrating a deep understanding of AI's practical application. |
July 24 - Women in AI
|
|
July 24 - Women in AI
2025-07-24 · 16:00
Hear talks from experts on cutting-edge topics in AI, ML, and computer vision! When Jul 24, 2025 at 9 - 11 AM Pacific Where Online. Register for the Zoom Exploring Vision-Language-Action (VLA) Models: From LLMs to Embodied AI This talk will explore the evolution of foundation models, highlighting the shift from large language models (LLMs) to vision-language models (VLMs), and now to vision-language-action (VLA) models. We'll dive into the emerging field of robot instruction following—what it means, and how recent research is shaping its future. I will present insights from my 2024 work on natural language-based robot instruction following and connect it to more recent advancements driving progress in this domain. About the Speaker Shreya Sharma is a Research Engineer at Reality Labs, Meta, where she works on photorealistic human avatars for AR/VR applications. She holds a bachelor’s degree in Computer Science from IIT Delhi and a master’s in Robotics from Carnegie Mellon University. Shreya is also a member of the inaugural 2023 cohort of the Quad Fellowship. Her research interests lie at the intersection of robotics and vision foundation models. Farming with CLIP: Foundation Models for Biodiversity and Agriculture Using open-source tools, we will explore the power and limitations of foundation models in agriculture and biodiversity applications. Leveraging the BIOTROVE dataset. The largest publicly accessible biodiversity dataset curated from iNaturalist, we will showcase real-world use cases powered by vision-language models trained on 40 million captioned images. We focus on understanding zero-shot capabilities, taxonomy-aware evaluation, and data-centric curation workflows. We will demonstrate how to visualize, filter, evaluate, and augment data at scale. This session includes practical walkthroughs on embedding visualization with CLIP, dataset slicing by taxonomic hierarchy, identification of model failure modes, and building fine-tuned pest and crop monitoring models. Attendees will gain insights into how to apply multi-modal foundation models for critical challenges in agriculture, like ecosystem monitoring in farming. About the Speaker Paula Ramos has a PhD in Computer Vision and Machine Learning, with more than 20 years of experience in the technological field. She has been developing novel integrated engineering technologies, mainly in Computer Vision, robotics, and Machine Learning applied to agriculture, since the early 2000s in Colombia. During her PhD and Postdoc research, she deployed multiple low-cost, smart edge & IoT computing technologies, such as farmers, that can be operated without expertise in computer vision systems. The central objective of Paula’s research has been to develop intelligent systems/machines that can understand and recreate the visual world around us to solve real-world needs, such as those in the agricultural industry. Multi-modal AI in Medical Edge and Client Device Computing In this live demo, we explore the transformative potential of multi-modal AI in medical edge and client device computing, focusing on real-time inference on a local AI PC. Attendees will witness how users can upload medical images, such as X-Rays, and ask questions about the images to the AI model. Inference is executed locally on Intel's integrated GPU and NPU using OpenVINO, enabling developers without deep AI experience to create generative AI applications. About the Speaker Helena Klosterman is an AI Engineer at Intel, based in the Netherlands, Helena enables organizations to unlock the potential of AI with OpenVINO, Intel's AI inference runtime. She is passionate about democratizing AI, developer experience, and bridging the gap between complex AI technology and practical applications. The Business of AI The talk will focus on the importance of clearly defining a specific problem and a use case, how to quantify the potential benefits of an AI solution in terms of measurable outcomes, evaluating technical feasibility in terms of technical challenges and limitations of implementing an AI solution, and envisioning the future of enterprise AI. About the Speaker Milica Cvetkovic is an AI engineer and consultant driving the development and deployment of production-ready AI systems for diverse organizations. Her expertise spans custom machine learning, generative AI, and AI operationalization. With degrees in mathematics and statistics, she possesses a decade of experience in education and edtech, including curriculum design and machine learning instruction for technical and non-technical audiences. Prior to Google, Milica held a data scientist role in biotechnology and has a proven track record of advising startups, demonstrating a deep understanding of AI's practical application. |
July 24 - Women in AI
|
|
July 24 - Women in AI
2025-07-24 · 16:00
Hear talks from experts on cutting-edge topics in AI, ML, and computer vision! When Jul 24, 2025 at 9 - 11 AM Pacific Where Online. Register for the Zoom Exploring Vision-Language-Action (VLA) Models: From LLMs to Embodied AI This talk will explore the evolution of foundation models, highlighting the shift from large language models (LLMs) to vision-language models (VLMs), and now to vision-language-action (VLA) models. We'll dive into the emerging field of robot instruction following—what it means, and how recent research is shaping its future. I will present insights from my 2024 work on natural language-based robot instruction following and connect it to more recent advancements driving progress in this domain. About the Speaker Shreya Sharma is a Research Engineer at Reality Labs, Meta, where she works on photorealistic human avatars for AR/VR applications. She holds a bachelor’s degree in Computer Science from IIT Delhi and a master’s in Robotics from Carnegie Mellon University. Shreya is also a member of the inaugural 2023 cohort of the Quad Fellowship. Her research interests lie at the intersection of robotics and vision foundation models. Farming with CLIP: Foundation Models for Biodiversity and Agriculture Using open-source tools, we will explore the power and limitations of foundation models in agriculture and biodiversity applications. Leveraging the BIOTROVE dataset. The largest publicly accessible biodiversity dataset curated from iNaturalist, we will showcase real-world use cases powered by vision-language models trained on 40 million captioned images. We focus on understanding zero-shot capabilities, taxonomy-aware evaluation, and data-centric curation workflows. We will demonstrate how to visualize, filter, evaluate, and augment data at scale. This session includes practical walkthroughs on embedding visualization with CLIP, dataset slicing by taxonomic hierarchy, identification of model failure modes, and building fine-tuned pest and crop monitoring models. Attendees will gain insights into how to apply multi-modal foundation models for critical challenges in agriculture, like ecosystem monitoring in farming. About the Speaker Paula Ramos has a PhD in Computer Vision and Machine Learning, with more than 20 years of experience in the technological field. She has been developing novel integrated engineering technologies, mainly in Computer Vision, robotics, and Machine Learning applied to agriculture, since the early 2000s in Colombia. During her PhD and Postdoc research, she deployed multiple low-cost, smart edge & IoT computing technologies, such as farmers, that can be operated without expertise in computer vision systems. The central objective of Paula’s research has been to develop intelligent systems/machines that can understand and recreate the visual world around us to solve real-world needs, such as those in the agricultural industry. Multi-modal AI in Medical Edge and Client Device Computing In this live demo, we explore the transformative potential of multi-modal AI in medical edge and client device computing, focusing on real-time inference on a local AI PC. Attendees will witness how users can upload medical images, such as X-Rays, and ask questions about the images to the AI model. Inference is executed locally on Intel's integrated GPU and NPU using OpenVINO, enabling developers without deep AI experience to create generative AI applications. About the Speaker Helena Klosterman is an AI Engineer at Intel, based in the Netherlands, Helena enables organizations to unlock the potential of AI with OpenVINO, Intel's AI inference runtime. She is passionate about democratizing AI, developer experience, and bridging the gap between complex AI technology and practical applications. The Business of AI The talk will focus on the importance of clearly defining a specific problem and a use case, how to quantify the potential benefits of an AI solution in terms of measurable outcomes, evaluating technical feasibility in terms of technical challenges and limitations of implementing an AI solution, and envisioning the future of enterprise AI. About the Speaker Milica Cvetkovic is an AI engineer and consultant driving the development and deployment of production-ready AI systems for diverse organizations. Her expertise spans custom machine learning, generative AI, and AI operationalization. With degrees in mathematics and statistics, she possesses a decade of experience in education and edtech, including curriculum design and machine learning instruction for technical and non-technical audiences. Prior to Google, Milica held a data scientist role in biotechnology and has a proven track record of advising startups, demonstrating a deep understanding of AI's practical application. |
July 24 - Women in AI
|
|
July 24 - Women in AI
2025-07-24 · 16:00
Hear talks from experts on cutting-edge topics in AI, ML, and computer vision! When Jul 24, 2025 at 9 - 11 AM Pacific Where Online. Register for the Zoom Exploring Vision-Language-Action (VLA) Models: From LLMs to Embodied AI This talk will explore the evolution of foundation models, highlighting the shift from large language models (LLMs) to vision-language models (VLMs), and now to vision-language-action (VLA) models. We'll dive into the emerging field of robot instruction following—what it means, and how recent research is shaping its future. I will present insights from my 2024 work on natural language-based robot instruction following and connect it to more recent advancements driving progress in this domain. About the Speaker Shreya Sharma is a Research Engineer at Reality Labs, Meta, where she works on photorealistic human avatars for AR/VR applications. She holds a bachelor’s degree in Computer Science from IIT Delhi and a master’s in Robotics from Carnegie Mellon University. Shreya is also a member of the inaugural 2023 cohort of the Quad Fellowship. Her research interests lie at the intersection of robotics and vision foundation models. Farming with CLIP: Foundation Models for Biodiversity and Agriculture Using open-source tools, we will explore the power and limitations of foundation models in agriculture and biodiversity applications. Leveraging the BIOTROVE dataset. The largest publicly accessible biodiversity dataset curated from iNaturalist, we will showcase real-world use cases powered by vision-language models trained on 40 million captioned images. We focus on understanding zero-shot capabilities, taxonomy-aware evaluation, and data-centric curation workflows. We will demonstrate how to visualize, filter, evaluate, and augment data at scale. This session includes practical walkthroughs on embedding visualization with CLIP, dataset slicing by taxonomic hierarchy, identification of model failure modes, and building fine-tuned pest and crop monitoring models. Attendees will gain insights into how to apply multi-modal foundation models for critical challenges in agriculture, like ecosystem monitoring in farming. About the Speaker Paula Ramos has a PhD in Computer Vision and Machine Learning, with more than 20 years of experience in the technological field. She has been developing novel integrated engineering technologies, mainly in Computer Vision, robotics, and Machine Learning applied to agriculture, since the early 2000s in Colombia. During her PhD and Postdoc research, she deployed multiple low-cost, smart edge & IoT computing technologies, such as farmers, that can be operated without expertise in computer vision systems. The central objective of Paula’s research has been to develop intelligent systems/machines that can understand and recreate the visual world around us to solve real-world needs, such as those in the agricultural industry. Multi-modal AI in Medical Edge and Client Device Computing In this live demo, we explore the transformative potential of multi-modal AI in medical edge and client device computing, focusing on real-time inference on a local AI PC. Attendees will witness how users can upload medical images, such as X-Rays, and ask questions about the images to the AI model. Inference is executed locally on Intel's integrated GPU and NPU using OpenVINO, enabling developers without deep AI experience to create generative AI applications. About the Speaker Helena Klosterman is an AI Engineer at Intel, based in the Netherlands, Helena enables organizations to unlock the potential of AI with OpenVINO, Intel's AI inference runtime. She is passionate about democratizing AI, developer experience, and bridging the gap between complex AI technology and practical applications. The Business of AI The talk will focus on the importance of clearly defining a specific problem and a use case, how to quantify the potential benefits of an AI solution in terms of measurable outcomes, evaluating technical feasibility in terms of technical challenges and limitations of implementing an AI solution, and envisioning the future of enterprise AI. About the Speaker Milica Cvetkovic is an AI engineer and consultant driving the development and deployment of production-ready AI systems for diverse organizations. Her expertise spans custom machine learning, generative AI, and AI operationalization. With degrees in mathematics and statistics, she possesses a decade of experience in education and edtech, including curriculum design and machine learning instruction for technical and non-technical audiences. Prior to Google, Milica held a data scientist role in biotechnology and has a proven track record of advising startups, demonstrating a deep understanding of AI's practical application. |
July 24 - Women in AI
|
|
2-Day Hands-on Online Workshop: Azure AI Foundry and Copilot Studio Bootcamp
2025-05-29 · 14:00
2 Days Hands-On Online Workshop: Azure AI Foundry and Copilot Studio Bootcamp Date: 29-30 May 2025, 9 AM to 5 PM Central Time Level: Beginners/Intermediate Registration Link: https://www.eventbrite.com/e/hands-on-azure-ai-foundry-and-copilot-studio-bootcamp-tickets-1267311596099?aff=oddtdtcreator Who Should Attend? This hands-on workshop is open to developers, senior software engineers, IT pros, architects, IT managers, citizen developers, technology product managers, IT leaders, enterprise architects, chief analytics officers, chief information officers, chief technology officers, and decision-makers interested in learning how AI Agents and Generative AI can help infuse artificial intelligence into next-generation apps and agents. Experience with C#, Python, or JavaScript is helpful but not required. You don't need prior knowledge of AI either. Although this isn't a data & analytics-focused workshop, data scientists, data stewards, and technically-minded data protection officers will also find it very valuable Description: With ChatGPT and other large language models, generative AI has captured the attention of global consumers, enterprises, and C-suite executives. AI has a significant role in the enterprise space and is evolving rapidly. Without understanding the concepts behind these advanced technologies, developers and administrators might find it challenging to assess the true impact of emerging tools and solutions. An AI agent is a powerful companion capable of managing a variety of interactions and tasks—from handling complex conversations to autonomously deciding the best actions based on instructions and context. Agents coordinate language models along with instructions, context, knowledge sources, topics, actions, inputs, and triggers to achieve your desired outcomes. Copilot Studio is a graphical, low-code tool designed for creating agents, including building automations with Power Automate and extending Microsoft 365 Copilot with your own enterprise data and scenarios. One standout feature of Copilot Studio is its ability to connect to other data sources through either prebuilt or custom plugins, as well as integration with Azure AI Foundry. This flexibility allows users to easily build sophisticated logic, ensuring that agent experiences are both powerful and intuitive. Azure AI Foundry is a unified AI platform that includes the Azure AI Foundry portal (formerly Azure AI Studio) and the Azure AI Foundry SDK—a unified SDK featuring pre-built app templates. This SDK gives developers easy access to popular models through a single interface, simplifies the integration of Azure AI into applications, and helps evaluate, debug, and improve application quality and safety throughout development, testing, and production. In this two-day virtual hands-on workshop, Microsoft AI and Business Applications MVP and Microsoft Certified Trainer, Prashant G Bhoyar, will cover these topics in detail:
By the end of the workshop, you'll have practical experience building next-generation multimodal applications, Custom Copilots, and AI Agents using Copilot Studio and Azure AI Foundry. Workshop Resources: Access to Copilot Studio, Azure, and Azure OpenAI services (valued at USD 500) will be provided for hands-on labs, allowing you to build enterprise-grade multimodal applications and agents. However, you're encouraged to use your own Copilot Studio and Azure subscriptions if available. Attendee Workstation Requirements: You must bring your own computer (Windows or Mac) with:
|
2-Day Hands-on Online Workshop: Azure AI Foundry and Copilot Studio Bootcamp
|
|
ClickHouse Delhi/Gurgaon Meetup - March 2025
2025-03-22 · 05:00
We are excited to finally have the first ClickHouse Meetup in the vibrant city of Delhi! Join the ClickHouse crew, from Singapore and from different cities in India, for an engaging day of talks, food, and discussion with your fellow database enthusiasts. But here's the deal: to secure your spot, make sure you register ASAP! 🗓️ Agenda:
If anyone from the community is interested in sharing a talk at future meetups, complete this CFP form and we’ll be in touch. _______ 🎤 Session Details: Introduction to ClickHouse Discover the secrets behind ClickHouse's unparalleled efficiency and performance. Johnny will give an overview of different use cases for which global companies are adopting this groundbreaking database to transform data storage and analytics. Speaker: Rakesh Puttaswamy, Solution Architect @ ClickHouse Rakesh Puttaswamy is a Solution Architect with ClickHouse, working with users across India, with over 12 years of experience in data architecture, big data, data science, and software engineering.Rakesh helps organizations design and implement cutting-edge data-driven solutions. With deep expertise in a broad range of databases and data warehousing technologies, he specializes in building scalable, innovative solutions to enable data transformation and drive business success. 🎤 Session Details: ClickPipes Overview and demo ClickPipes is a powerful integration engine that simplifies data ingestion at scale, making it as easy as a few clicks. With an intuitive onboarding process, setting up new ingestion pipelines takes just a few steps—select your data source, define the schema, and let ClickPipes handle the rest. Designed for continuous ingest, it automates pipeline management, ensuring seamless data flow without manual intervention. In this talk, Kunal will demo the Postgres CDC connector for ClickPipes, enabling seamless, native replication of Postgres data to ClickHouse Cloud in just a few clicks—no external tools needed for fast, cost-effective analytics. Speaker: Kunal Gupta, Sr. Software Engineer @ ClickHouse Kunal Gupta is a Senior Software Engineer at ClickHouse, joining through the acquisition of PeerDB in 2024, where he played a pivotal role as a founding engineer. With several years of experience in architecting scalable systems and real-time applications, Kunal has consistently driven innovation and technical excellence. Previously, he was a founding engineer for new solutions at ICICIdirect and at AsknBid Tech, leading high-impact teams and advancing code analysis, storage solutions, and enterprise software development. 🎤 Session Details: Optimizing Log Management with Clickhouse: Cost-Effective & Scalable Solutions Efficient log management is essential in today's cloud-native environments, yet traditional solutions like ElasticSearch often face scalability issues, high costs, and performance limitations. This talk will begin with an overview of common logging tools and their challenges, followed by an in-depth look at ClickHouse's architecture. We will compare ClickHouse with ElasticSearch, focusing on improvements in query performance, storage efficiency, and overall cost-effectiveness. A key highlight will be OLX India's migration to ClickHouse, detailing the motivations behind the shift, the migration strategy, key optimizations, and the resulting 50% reduction in log storage costs. By the end of this talk, attendees will gain a clear understanding of when and how to leverage ClickHouse for log management, along with best practices for optimizing performance and reducing operational costs. Speaker: Pushpender Kumar, DevOps Architect @ OLX India Born and raised in Bijnor, moved to Delhi to stay ahead in the race of life. Currently working as a DevOps Architect at OLX India, specializing in cloud infrastructure, Kubernetes, and automation with over 10 years of experience. Successfully optimized log storage costs by 50% using Clickhouse, bringing scalability and efficiency to large-scale logging systems. Passionate about cloud optimization, DevOps hiring, and performance engineering. 🎤 Session Details: ClickHouse at Physics Wallah: Empowering Real-Time Analytics at Scale This session explores how Physics Wallah revolutionized its real-time analytics capabilities by leveraging ClickHouse. We'll delve into the journey of implementing ClickHouse to efficiently handle large-scale data processing, optimize query performance, and power diverse use cases such as user activity tracking and engagement analysis. By enabling actionable insights and seamless decision-making, this transformation has significantly enhanced the learning experience for millions of users. Today, more than five customer-facing products at Physics Wallah are powered by ClickHouse, serving over 10 million students and parents, including 1.5 million Daily Active Users. Our in-house ClickHouse cluster, hosted and managed within our EKS infrastructure on AWS Cloud, ingests more than 10 million rows of data daily from various sources. Join us to learn about the architecture, challenges, and key strategies behind this scalable, high-performance analytics solution. Speaker: Utkarsh G. Srivastava, Software Development Engineer III @ Physics Wallah As a versatile Software Engineer with over 7 years of experience in the IT industry, I have had the privilege of taking on diverse roles, with a primary focus on backend development, data engineering, infrastructure, DevOps, and security. Throughout my career, I have played a pivotal role in transformative projects, consistently striving to craft innovative and effective solutions for customers in the SaaS space. 🎤 Session Details: FabFunnel & ClickHouse: Delivering Real-Time Marketing Analytics We are a performance marketing company that relies on real-time reporting to drive data-driven decisions and maximize campaign effectiveness. As our client base expanded, we encountered significant challenges with our reporting system—frequent data updates meant handling large datasets inefficiently, leading to slow query execution and delays in delivering insights. This bottleneck hindered our ability to provide timely optimizations for ad campaigns. To address these issues, we needed a solution that could handle rapid data ingestion and querying at scale without the overhead of traditional refresh processes. In this talk, we’ll share how we transformed our reporting infrastructure to achieve real-time insights, enhancing speed, scalability, and efficiency in managing large-scale ad performance data. Speakers: Anmol Jain, SDE-2 (Full stack Developer), & Siddhant Gaba, SDE-2 (Python) @ Idea Clan From competing as a national table tennis player to building high-performance software, Anmol Jain brings a unique mix of strategy and problem-solving to tech. With 3+ years of experience at Idea Clan, they play a key role in scaling Lookfinity and FabFunnel, managing multi-million-dollar ad spends every month. Specializing in ClickHouse, React.js, and Node.js, Anmol focuses on real-time data processing and scalable backend solutions. At this meet-up, they’ll share insights on solving reporting challenges and driving real-time decision-making in performance marketing. Siddhant Gaba is an SDE II at Idea Clan, with expertise in Python, Java, and C#, specializing in scalable backend systems. With four years of experience working with FastAPI, PostgreSQL, MongoDB, and ClickHouse, he focuses on real-time analytics, database optimization, and distributed systems. Passionate about high-performance computing, asynchronous APIs, and system design, he aims to advance real-time data processing. Outside of work, he enjoys playing volleyball. At this meetup, he will share insights on how ClickHouse transformed real-time reporting and scalability. 🎤 Session Details: From SQL to AI: Building Intelligent Applications with ClickHouse and LangDB As AI becomes a driving force behind innovation, building applications that seamlessly integrate AI capabilities with existing data infrastructures is critical. In this session, we explore the creation of agentic applications using ClickHouse and LangDB. We will introduce the concept of an AI gateway, explaining its role in connecting powerful AI models with the high-performance analytics engine of ClickHouse. By leveraging LangDB, we demonstrate how to directly interact with AI functions as User-Defined Functions (UDFs) in ClickHouse, enabling developers to design and execute complex AI workflows within SQL. Additionally, we will showcase how LangDB facilitates deep visibility into AI function behaviors and agent interactions, providing tools to analyze and optimize the performance of AI-driven logic. Finally, we will highlight how ClickHouse, powered by LangDB APIs, can be used to evaluate and refine the quality of LLM responses, ensuring reliable and efficient AI integrations. Speaker: Matteo Pelati, Co-founder, LangDB.ai Matteo Pelati is a seasoned software engineer with over two decades of experience, specializing in data engineering for the past ten years. He is the co-founder of LangDB, a company based in Singapore building the fastest Open Source AI Gateway. Before founding LangDB, he was part of the early team at DataRobot, where he contributed to scaling their product for enterprise clients. Subsequently, he joined DBS Bank where he built their data platform and team from the ground up. Prior to starting LangDB, Matteo led the data group for Asia Pacific and data engineering at Goldman Sachs. |
ClickHouse Delhi/Gurgaon Meetup - March 2025
|
|
Why are embedding vectors so absurdly useful?
2023-11-08 · 20:10
The secret sauce behind LLMs are embedding vectors — just arrays of very small numbers. But with them, you can build absurdly useful things ranging from cross-language search features to polyglot chat bots. We'll talk about how they work and how you can use them to build magical things. |
|