talk-data.com talk-data.com

Filter by Source

Select conferences and events

Activities & events

Title & Speakers Event

PyData Wolverhampton Launch Event: From Data to Deployment Join us for the inaugural PyData Wolverhampton meetup! We're bringing together data scientists, engineers, AI practitioners, and anyone interested in Python and data science. What to Expect: This event features two practical talks on building AI systems that work in production: Talk 1: "From Demos to Deployed: Building AI Systems That Work, and Work Right" Speaker: Stephen Toriola (Software & AI Engineer at Compare the Market) Explore how AI has evolved from simple demos to production systems, what makes AI work in real-world applications, and how to build responsibly. Talk 2: "Building AI Right: Ethics and Implementation in Practice" Speaker: Nazeh Abel (AI Consultant at Medallion Technologies) Practical insights on implementing AI ethically, common pitfalls to avoid, and making better decisions when building AI systems. Agenda:

  • 6:00 PM - 6:30 PM: Arrivals, networking, and pizza
  • 6:30 PM - 6:45 PM: Welcome and introductions
  • 6:45 PM - 7:25 PM: Talk 1 - Stephen Toriola
  • 7:25 PM - 8:05 PM: Talk 2 - Nazeh Abel
  • 8:05 PM - 8:30 PM: Q&A and networking

What to Bring: Just yourself! No laptop or preparation needed. Bring business cards if you'd like to connect with other attendees. Food & Drinks: Free pizza and soft drinks provided. How to Find Us: University of Wolverhampton Science Park, Wolverhampton WV10 9RU By Public Transport: From Wolverhampton train station, walk 5 minutes to the bus station. Take bus 32 or 33, ride for 7 stops (approximately 12 minutes) and drop off at Stafford Road. Walk 5 minutes to the Science Park. By Taxi: 7-minute drive from Wolverhampton train/bus station. By Car: Free parking available on-site. Accessibility: The venue is on the ground floor and fully accessible. We'll have PyData signage at the entrance to help you find us. Who Should Attend: Data scientists, data analysts, machine learning engineers, software developers, students, and anyone interested in Python, data science, or AI. All skill levels welcome! PyData Wolverhampton is part of the global PyData network, supported by NumFOCUS. We're building a community for data professionals in the Black Country. Follow us on LinkedIn: [PyData Wolverhampton] See you there!

From Data to Deployment: Building Production AI Systems

By 2026, the AI landscape has shifted from experimentation to expectation. Enterprises are no longer asking whether they should adopt AI—they’re asking how to operationalize it responsibly, reliably, and at scale. The organizations pulling ahead are the ones investing in infrastructure that treats AI not as a lab experiment, but as a mission-critical capability.

In this webinar, we’ll break down what it really takes to run AI in production today—where models change fast, data moves continuously, and stakeholders demand both innovation and accountability. We’ll explore what “enterprise-grade AI” looks like in practice, how to bake governance and observability into every layer of your architecture, and why a modern API platform is emerging as the backbone of real-world AI systems.

What you’ll learn:

  • Why APIs matter more than ever: How a strong API strategy enables scalable AI services, reliable model access, and consistent governance across teams.
  • From gateway to AI factory: How your API platform can orchestrate the full lifecycle of AI—model deployment, data flows, real-time inference, and continuous improvement.
  • Balancing flexibility and control: Best practices for building AI-ready infrastructure that accelerates developer productivity while maintaining enterprise-level compliance and security.
  • Making AI production-ready: The cultural, architectural, and operational shifts needed to move from promising pilots to dependable, scalable AI systems that deliver real business impact.
From Experiment to Enterprise: Operationalizing AI in 2026

By 2026, the AI landscape has shifted from experimentation to expectation. Enterprises are no longer asking whether they should adopt AI—they’re asking how to operationalize it responsibly, reliably, and at scale. The organizations pulling ahead are the ones investing in infrastructure that treats AI not as a lab experiment, but as a mission-critical capability.

In this webinar, we’ll break down what it really takes to run AI in production today—where models change fast, data moves continuously, and stakeholders demand both innovation and accountability. We’ll explore what “enterprise-grade AI” looks like in practice, how to bake governance and observability into every layer of your architecture, and why a modern API platform is emerging as the backbone of real-world AI systems.

What you’ll learn:

  • Why APIs matter more than ever: How a strong API strategy enables scalable AI services, reliable model access, and consistent governance across teams.
  • From gateway to AI factory: How your API platform can orchestrate the full lifecycle of AI—model deployment, data flows, real-time inference, and continuous improvement.
  • Balancing flexibility and control: Best practices for building AI-ready infrastructure that accelerates developer productivity while maintaining enterprise-level compliance and security.
  • Making AI production-ready: The cultural, architectural, and operational shifts needed to move from promising pilots to dependable, scalable AI systems that deliver real business impact.
From Experiment to Enterprise: Operationalizing AI in 2026

By 2026, the AI landscape has shifted from experimentation to expectation. Enterprises are no longer asking whether they should adopt AI—they’re asking how to operationalize it responsibly, reliably, and at scale. The organizations pulling ahead are the ones investing in infrastructure that treats AI not as a lab experiment, but as a mission-critical capability.

In this webinar, we’ll break down what it really takes to run AI in production today—where models change fast, data moves continuously, and stakeholders demand both innovation and accountability. We’ll explore what “enterprise-grade AI” looks like in practice, how to bake governance and observability into every layer of your architecture, and why a modern API platform is emerging as the backbone of real-world AI systems.

What you’ll learn:

  • Why APIs matter more than ever: How a strong API strategy enables scalable AI services, reliable model access, and consistent governance across teams.
  • From gateway to AI factory: How your API platform can orchestrate the full lifecycle of AI—model deployment, data flows, real-time inference, and continuous improvement.
  • Balancing flexibility and control: Best practices for building AI-ready infrastructure that accelerates developer productivity while maintaining enterprise-level compliance and security.
  • Making AI production-ready: The cultural, architectural, and operational shifts needed to move from promising pilots to dependable, scalable AI systems that deliver real business impact.
From Experiment to Enterprise: Operationalizing AI in 2026

By 2026, the AI landscape has shifted from experimentation to expectation. Enterprises are no longer asking whether they should adopt AI—they’re asking how to operationalize it responsibly, reliably, and at scale. The organizations pulling ahead are the ones investing in infrastructure that treats AI not as a lab experiment, but as a mission-critical capability.

In this webinar, we’ll break down what it really takes to run AI in production today—where models change fast, data moves continuously, and stakeholders demand both innovation and accountability. We’ll explore what “enterprise-grade AI” looks like in practice, how to bake governance and observability into every layer of your architecture, and why a modern API platform is emerging as the backbone of real-world AI systems.

What you’ll learn:

  • Why APIs matter more than ever: How a strong API strategy enables scalable AI services, reliable model access, and consistent governance across teams.
  • From gateway to AI factory: How your API platform can orchestrate the full lifecycle of AI—model deployment, data flows, real-time inference, and continuous improvement.
  • Balancing flexibility and control: Best practices for building AI-ready infrastructure that accelerates developer productivity while maintaining enterprise-level compliance and security.
  • Making AI production-ready: The cultural, architectural, and operational shifts needed to move from promising pilots to dependable, scalable AI systems that deliver real business impact.
From Experiment to Enterprise: Operationalizing AI in 2026

By 2026, the AI landscape has shifted from experimentation to expectation. Enterprises are no longer asking whether they should adopt AI—they’re asking how to operationalize it responsibly, reliably, and at scale. The organizations pulling ahead are the ones investing in infrastructure that treats AI not as a lab experiment, but as a mission-critical capability.

In this webinar, we’ll break down what it really takes to run AI in production today—where models change fast, data moves continuously, and stakeholders demand both innovation and accountability. We’ll explore what “enterprise-grade AI” looks like in practice, how to bake governance and observability into every layer of your architecture, and why a modern API platform is emerging as the backbone of real-world AI systems.

What you’ll learn:

  • Why APIs matter more than ever: How a strong API strategy enables scalable AI services, reliable model access, and consistent governance across teams.
  • From gateway to AI factory: How your API platform can orchestrate the full lifecycle of AI—model deployment, data flows, real-time inference, and continuous improvement.
  • Balancing flexibility and control: Best practices for building AI-ready infrastructure that accelerates developer productivity while maintaining enterprise-level compliance and security.
  • Making AI production-ready: The cultural, architectural, and operational shifts needed to move from promising pilots to dependable, scalable AI systems that deliver real business impact.
From Experiment to Enterprise: Operationalizing AI in 2026

Join the virtual Meetup to hear talks from experts on cutting-edge topics across AI, ML, and computer vision.

Register for the Zoom

Date and Time

Dec 4, 2025 9:00 - 11:00 AM Pacific

Benchmarking Vision-Language Models for Autonomous Driving Safety

This workshop introduces a unified framework for evaluating how vision-language models handle driving safety. Using an enhanced BDDOIA dataset with scene, weather, and action labels, we benchmark models like Gemini, FastVLM, and Qwen within FiftyOne. Our results show consistent blind spots where models misjudge unsafe situations, highlighting the need for safer and more interpretable AI systems for autonomous driving.

About the Speaker

Adonai Vera - Machine Learning Engineer & DevRel at Voxel51. With over 7 years of experience building computer vision and machine learning models using TensorFlow\, Docker\, and OpenCV. I started as a software developer\, moved into AI\, led teams\, and served as CTO. Today\, I connect code and community to build open\, production-ready AI — making technology simple\, accessible\, and reliable.

TrueRice: AI-Powered Visual Quality Control for Rice Grains and Beyond at Scale

Agriculture remains one of the most under-digitized industries, yet grain quality control defines pricing, trust, and livelihoods for millions. TrueRice is an AI-powered analyzer that turns a flatbed scanner into a high-precision, 30-second QC engine, replacing the 2+ hours and subjectivity of manual quality inspection.

Built on a state-of-the-art 8K image processing pipeline with SAHI (Slicing Aided Hyper Inference), it detects fine-grained kernel defects at scale with high accuracy across grain size, shape, breakage, discoloration, and chalkiness. Now being extended to maize and coffee, TrueRice showcases how cross-crop transfer learning and frugal AI engineering can scale precision QC for farmers, millers, and exporters. This talk will cover the design principles, model architecture choices, and a live demonstration, while addressing challenges in data variability, regulatory standards, and cross-crop adaptation.

About the Speaker

Sai Jeevan Puchakayala is an Interdisciplinary AI/ML Consultant, Researcher, and Tech Lead at Sustainable Living Lab (SL2) India, where he drives development of applied AI solutions for agriculture, climate resilience, and sustainability. He led the engineering of TrueRice, an award-winning grain quality analyzer that won India’s first International Agri Hackathon 2025.

WeedNet: A Foundation Model Based Global-to-Local AI Approach for Real-Time Weed Species Identification and Classification

Early and accurate weed identification is critical for effective management, yet current AI-based approaches face challenges due to limited expert-verified datasets and the high variability in weed morphology across species and growth stages. We present WeedNet, a global-scale weed identification model designed to recognize a wide range of species, including noxious and invasive plants. WeedNet is an end-to-end real-time pipeline that integrates self-supervised pretraining, fine-tuning, and trustworthiness strategies to improve both accuracy and reliability.

Building on this foundation, we introduce a Global-to-Local strategy: while the Global WeedNet model provides broad generalization, we fine-tune local variants such as Iowa WeedNet to target region-specific weed communities in the U.S. Midwest. Our evaluation addresses both intra-species diversity (different growth stages) and inter-species similarity (look-alike species), ensuring robust performance under real-world variability. We further validate WeedNet on images captured by drones and ground rovers, demonstrating its potential for deployment in robotic platforms. Beyond field applications, we integrate a conversational AI to enable practical decision-support tools for farmers, agronomists, researchers, and land managers worldwide. These advances position WeedNet as a foundational model for intelligent, scalable, and regionally adaptable weed management and ecological conservation.

About the Speaker

Timilehin Ayanlade is a Ph.D. candidate in the Self-aware Complex Systems Laboratory at Iowa State University, where his research focuses on developing machine learning and computer vision methods for agricultural applications. His work integrates multimodal data across ground-based sensing, UAV, and satellite with advanced AI models to tackle challenges in weed identification, crop monitoring, and crop yield prediction.

Memory Matters: Early Alzheimer’s Detection with AI-Powered Mobile Tools

Advancements in artificial intelligence and mobile technology are transforming the landscape of neurodegenerative disease detection, offering new hope for early intervention in Alzheimer’s. By integrating machine learning algorithms with everyday mobile devices, we are entering a new era of accessible, scalable, and non-invasive tools for early Alzheimer’s detection In this talk, we’ll cover the potential of AI in health care systems, ethical considerations, plus an architecture, model, datasets and framework deep dive.

About the Speaker

Reetam Biswas has more than 18 years of experience in the IT industry as a software architect, currently working on AI.

Dec 4 - AI, ML and Computer Vision Meetup

Join the virtual Meetup to hear talks from experts on cutting-edge topics across AI, ML, and computer vision.

Register for the Zoom

Date and Time

Dec 4, 2025 9:00 - 11:00 AM Pacific

Benchmarking Vision-Language Models for Autonomous Driving Safety

This workshop introduces a unified framework for evaluating how vision-language models handle driving safety. Using an enhanced BDDOIA dataset with scene, weather, and action labels, we benchmark models like Gemini, FastVLM, and Qwen within FiftyOne. Our results show consistent blind spots where models misjudge unsafe situations, highlighting the need for safer and more interpretable AI systems for autonomous driving.

About the Speaker

Adonai Vera - Machine Learning Engineer & DevRel at Voxel51. With over 7 years of experience building computer vision and machine learning models using TensorFlow\, Docker\, and OpenCV. I started as a software developer\, moved into AI\, led teams\, and served as CTO. Today\, I connect code and community to build open\, production-ready AI — making technology simple\, accessible\, and reliable.

TrueRice: AI-Powered Visual Quality Control for Rice Grains and Beyond at Scale

Agriculture remains one of the most under-digitized industries, yet grain quality control defines pricing, trust, and livelihoods for millions. TrueRice is an AI-powered analyzer that turns a flatbed scanner into a high-precision, 30-second QC engine, replacing the 2+ hours and subjectivity of manual quality inspection.

Built on a state-of-the-art 8K image processing pipeline with SAHI (Slicing Aided Hyper Inference), it detects fine-grained kernel defects at scale with high accuracy across grain size, shape, breakage, discoloration, and chalkiness. Now being extended to maize and coffee, TrueRice showcases how cross-crop transfer learning and frugal AI engineering can scale precision QC for farmers, millers, and exporters. This talk will cover the design principles, model architecture choices, and a live demonstration, while addressing challenges in data variability, regulatory standards, and cross-crop adaptation.

About the Speaker

Sai Jeevan Puchakayala is an Interdisciplinary AI/ML Consultant, Researcher, and Tech Lead at Sustainable Living Lab (SL2) India, where he drives development of applied AI solutions for agriculture, climate resilience, and sustainability. He led the engineering of TrueRice, an award-winning grain quality analyzer that won India’s first International Agri Hackathon 2025.

WeedNet: A Foundation Model Based Global-to-Local AI Approach for Real-Time Weed Species Identification and Classification

Early and accurate weed identification is critical for effective management, yet current AI-based approaches face challenges due to limited expert-verified datasets and the high variability in weed morphology across species and growth stages. We present WeedNet, a global-scale weed identification model designed to recognize a wide range of species, including noxious and invasive plants. WeedNet is an end-to-end real-time pipeline that integrates self-supervised pretraining, fine-tuning, and trustworthiness strategies to improve both accuracy and reliability.

Building on this foundation, we introduce a Global-to-Local strategy: while the Global WeedNet model provides broad generalization, we fine-tune local variants such as Iowa WeedNet to target region-specific weed communities in the U.S. Midwest. Our evaluation addresses both intra-species diversity (different growth stages) and inter-species similarity (look-alike species), ensuring robust performance under real-world variability. We further validate WeedNet on images captured by drones and ground rovers, demonstrating its potential for deployment in robotic platforms. Beyond field applications, we integrate a conversational AI to enable practical decision-support tools for farmers, agronomists, researchers, and land managers worldwide. These advances position WeedNet as a foundational model for intelligent, scalable, and regionally adaptable weed management and ecological conservation.

About the Speaker

Timilehin Ayanlade is a Ph.D. candidate in the Self-aware Complex Systems Laboratory at Iowa State University, where his research focuses on developing machine learning and computer vision methods for agricultural applications. His work integrates multimodal data across ground-based sensing, UAV, and satellite with advanced AI models to tackle challenges in weed identification, crop monitoring, and crop yield prediction.

Memory Matters: Early Alzheimer’s Detection with AI-Powered Mobile Tools

Advancements in artificial intelligence and mobile technology are transforming the landscape of neurodegenerative disease detection, offering new hope for early intervention in Alzheimer’s. By integrating machine learning algorithms with everyday mobile devices, we are entering a new era of accessible, scalable, and non-invasive tools for early Alzheimer’s detection In this talk, we’ll cover the potential of AI in health care systems, ethical considerations, plus an architecture, model, datasets and framework deep dive.

About the Speaker

Reetam Biswas has more than 18 years of experience in the IT industry as a software architect, currently working on AI.

Dec 4 - AI, ML and Computer Vision Meetup

Join the virtual Meetup to hear talks from experts on cutting-edge topics across AI, ML, and computer vision.

Register for the Zoom

Date and Time

Dec 4, 2025 9:00 - 11:00 AM Pacific

Benchmarking Vision-Language Models for Autonomous Driving Safety

This workshop introduces a unified framework for evaluating how vision-language models handle driving safety. Using an enhanced BDDOIA dataset with scene, weather, and action labels, we benchmark models like Gemini, FastVLM, and Qwen within FiftyOne. Our results show consistent blind spots where models misjudge unsafe situations, highlighting the need for safer and more interpretable AI systems for autonomous driving.

About the Speaker

Adonai Vera - Machine Learning Engineer & DevRel at Voxel51. With over 7 years of experience building computer vision and machine learning models using TensorFlow\, Docker\, and OpenCV. I started as a software developer\, moved into AI\, led teams\, and served as CTO. Today\, I connect code and community to build open\, production-ready AI — making technology simple\, accessible\, and reliable.

TrueRice: AI-Powered Visual Quality Control for Rice Grains and Beyond at Scale

Agriculture remains one of the most under-digitized industries, yet grain quality control defines pricing, trust, and livelihoods for millions. TrueRice is an AI-powered analyzer that turns a flatbed scanner into a high-precision, 30-second QC engine, replacing the 2+ hours and subjectivity of manual quality inspection.

Built on a state-of-the-art 8K image processing pipeline with SAHI (Slicing Aided Hyper Inference), it detects fine-grained kernel defects at scale with high accuracy across grain size, shape, breakage, discoloration, and chalkiness. Now being extended to maize and coffee, TrueRice showcases how cross-crop transfer learning and frugal AI engineering can scale precision QC for farmers, millers, and exporters. This talk will cover the design principles, model architecture choices, and a live demonstration, while addressing challenges in data variability, regulatory standards, and cross-crop adaptation.

About the Speaker

Sai Jeevan Puchakayala is an Interdisciplinary AI/ML Consultant, Researcher, and Tech Lead at Sustainable Living Lab (SL2) India, where he drives development of applied AI solutions for agriculture, climate resilience, and sustainability. He led the engineering of TrueRice, an award-winning grain quality analyzer that won India’s first International Agri Hackathon 2025.

WeedNet: A Foundation Model Based Global-to-Local AI Approach for Real-Time Weed Species Identification and Classification

Early and accurate weed identification is critical for effective management, yet current AI-based approaches face challenges due to limited expert-verified datasets and the high variability in weed morphology across species and growth stages. We present WeedNet, a global-scale weed identification model designed to recognize a wide range of species, including noxious and invasive plants. WeedNet is an end-to-end real-time pipeline that integrates self-supervised pretraining, fine-tuning, and trustworthiness strategies to improve both accuracy and reliability.

Building on this foundation, we introduce a Global-to-Local strategy: while the Global WeedNet model provides broad generalization, we fine-tune local variants such as Iowa WeedNet to target region-specific weed communities in the U.S. Midwest. Our evaluation addresses both intra-species diversity (different growth stages) and inter-species similarity (look-alike species), ensuring robust performance under real-world variability. We further validate WeedNet on images captured by drones and ground rovers, demonstrating its potential for deployment in robotic platforms. Beyond field applications, we integrate a conversational AI to enable practical decision-support tools for farmers, agronomists, researchers, and land managers worldwide. These advances position WeedNet as a foundational model for intelligent, scalable, and regionally adaptable weed management and ecological conservation.

About the Speaker

Timilehin Ayanlade is a Ph.D. candidate in the Self-aware Complex Systems Laboratory at Iowa State University, where his research focuses on developing machine learning and computer vision methods for agricultural applications. His work integrates multimodal data across ground-based sensing, UAV, and satellite with advanced AI models to tackle challenges in weed identification, crop monitoring, and crop yield prediction.

Memory Matters: Early Alzheimer’s Detection with AI-Powered Mobile Tools

Advancements in artificial intelligence and mobile technology are transforming the landscape of neurodegenerative disease detection, offering new hope for early intervention in Alzheimer’s. By integrating machine learning algorithms with everyday mobile devices, we are entering a new era of accessible, scalable, and non-invasive tools for early Alzheimer’s detection In this talk, we’ll cover the potential of AI in health care systems, ethical considerations, plus an architecture, model, datasets and framework deep dive.

About the Speaker

Reetam Biswas has more than 18 years of experience in the IT industry as a software architect, currently working on AI.

Dec 4 - AI, ML and Computer Vision Meetup

Join the virtual Meetup to hear talks from experts on cutting-edge topics across AI, ML, and computer vision.

Register for the Zoom

Date and Time

Dec 4, 2025 9:00 - 11:00 AM Pacific

Benchmarking Vision-Language Models for Autonomous Driving Safety

This workshop introduces a unified framework for evaluating how vision-language models handle driving safety. Using an enhanced BDDOIA dataset with scene, weather, and action labels, we benchmark models like Gemini, FastVLM, and Qwen within FiftyOne. Our results show consistent blind spots where models misjudge unsafe situations, highlighting the need for safer and more interpretable AI systems for autonomous driving.

About the Speaker

Adonai Vera - Machine Learning Engineer & DevRel at Voxel51. With over 7 years of experience building computer vision and machine learning models using TensorFlow\, Docker\, and OpenCV. I started as a software developer\, moved into AI\, led teams\, and served as CTO. Today\, I connect code and community to build open\, production-ready AI — making technology simple\, accessible\, and reliable.

TrueRice: AI-Powered Visual Quality Control for Rice Grains and Beyond at Scale

Agriculture remains one of the most under-digitized industries, yet grain quality control defines pricing, trust, and livelihoods for millions. TrueRice is an AI-powered analyzer that turns a flatbed scanner into a high-precision, 30-second QC engine, replacing the 2+ hours and subjectivity of manual quality inspection.

Built on a state-of-the-art 8K image processing pipeline with SAHI (Slicing Aided Hyper Inference), it detects fine-grained kernel defects at scale with high accuracy across grain size, shape, breakage, discoloration, and chalkiness. Now being extended to maize and coffee, TrueRice showcases how cross-crop transfer learning and frugal AI engineering can scale precision QC for farmers, millers, and exporters. This talk will cover the design principles, model architecture choices, and a live demonstration, while addressing challenges in data variability, regulatory standards, and cross-crop adaptation.

About the Speaker

Sai Jeevan Puchakayala is an Interdisciplinary AI/ML Consultant, Researcher, and Tech Lead at Sustainable Living Lab (SL2) India, where he drives development of applied AI solutions for agriculture, climate resilience, and sustainability. He led the engineering of TrueRice, an award-winning grain quality analyzer that won India’s first International Agri Hackathon 2025.

WeedNet: A Foundation Model Based Global-to-Local AI Approach for Real-Time Weed Species Identification and Classification

Early and accurate weed identification is critical for effective management, yet current AI-based approaches face challenges due to limited expert-verified datasets and the high variability in weed morphology across species and growth stages. We present WeedNet, a global-scale weed identification model designed to recognize a wide range of species, including noxious and invasive plants. WeedNet is an end-to-end real-time pipeline that integrates self-supervised pretraining, fine-tuning, and trustworthiness strategies to improve both accuracy and reliability.

Building on this foundation, we introduce a Global-to-Local strategy: while the Global WeedNet model provides broad generalization, we fine-tune local variants such as Iowa WeedNet to target region-specific weed communities in the U.S. Midwest. Our evaluation addresses both intra-species diversity (different growth stages) and inter-species similarity (look-alike species), ensuring robust performance under real-world variability. We further validate WeedNet on images captured by drones and ground rovers, demonstrating its potential for deployment in robotic platforms. Beyond field applications, we integrate a conversational AI to enable practical decision-support tools for farmers, agronomists, researchers, and land managers worldwide. These advances position WeedNet as a foundational model for intelligent, scalable, and regionally adaptable weed management and ecological conservation.

About the Speaker

Timilehin Ayanlade is a Ph.D. candidate in the Self-aware Complex Systems Laboratory at Iowa State University, where his research focuses on developing machine learning and computer vision methods for agricultural applications. His work integrates multimodal data across ground-based sensing, UAV, and satellite with advanced AI models to tackle challenges in weed identification, crop monitoring, and crop yield prediction.

Memory Matters: Early Alzheimer’s Detection with AI-Powered Mobile Tools

Advancements in artificial intelligence and mobile technology are transforming the landscape of neurodegenerative disease detection, offering new hope for early intervention in Alzheimer’s. By integrating machine learning algorithms with everyday mobile devices, we are entering a new era of accessible, scalable, and non-invasive tools for early Alzheimer’s detection In this talk, we’ll cover the potential of AI in health care systems, ethical considerations, plus an architecture, model, datasets and framework deep dive.

About the Speaker

Reetam Biswas has more than 18 years of experience in the IT industry as a software architect, currently working on AI.

Dec 4 - AI, ML and Computer Vision Meetup

Join the virtual Meetup to hear talks from experts on cutting-edge topics across AI, ML, and computer vision.

Register for the Zoom

Date and Time

Dec 4, 2025 9:00 - 11:00 AM Pacific

Benchmarking Vision-Language Models for Autonomous Driving Safety

This workshop introduces a unified framework for evaluating how vision-language models handle driving safety. Using an enhanced BDDOIA dataset with scene, weather, and action labels, we benchmark models like Gemini, FastVLM, and Qwen within FiftyOne. Our results show consistent blind spots where models misjudge unsafe situations, highlighting the need for safer and more interpretable AI systems for autonomous driving.

About the Speaker

Adonai Vera - Machine Learning Engineer & DevRel at Voxel51. With over 7 years of experience building computer vision and machine learning models using TensorFlow\, Docker\, and OpenCV. I started as a software developer\, moved into AI\, led teams\, and served as CTO. Today\, I connect code and community to build open\, production-ready AI — making technology simple\, accessible\, and reliable.

TrueRice: AI-Powered Visual Quality Control for Rice Grains and Beyond at Scale

Agriculture remains one of the most under-digitized industries, yet grain quality control defines pricing, trust, and livelihoods for millions. TrueRice is an AI-powered analyzer that turns a flatbed scanner into a high-precision, 30-second QC engine, replacing the 2+ hours and subjectivity of manual quality inspection.

Built on a state-of-the-art 8K image processing pipeline with SAHI (Slicing Aided Hyper Inference), it detects fine-grained kernel defects at scale with high accuracy across grain size, shape, breakage, discoloration, and chalkiness. Now being extended to maize and coffee, TrueRice showcases how cross-crop transfer learning and frugal AI engineering can scale precision QC for farmers, millers, and exporters. This talk will cover the design principles, model architecture choices, and a live demonstration, while addressing challenges in data variability, regulatory standards, and cross-crop adaptation.

About the Speaker

Sai Jeevan Puchakayala is an Interdisciplinary AI/ML Consultant, Researcher, and Tech Lead at Sustainable Living Lab (SL2) India, where he drives development of applied AI solutions for agriculture, climate resilience, and sustainability. He led the engineering of TrueRice, an award-winning grain quality analyzer that won India’s first International Agri Hackathon 2025.

WeedNet: A Foundation Model Based Global-to-Local AI Approach for Real-Time Weed Species Identification and Classification

Early and accurate weed identification is critical for effective management, yet current AI-based approaches face challenges due to limited expert-verified datasets and the high variability in weed morphology across species and growth stages. We present WeedNet, a global-scale weed identification model designed to recognize a wide range of species, including noxious and invasive plants. WeedNet is an end-to-end real-time pipeline that integrates self-supervised pretraining, fine-tuning, and trustworthiness strategies to improve both accuracy and reliability.

Building on this foundation, we introduce a Global-to-Local strategy: while the Global WeedNet model provides broad generalization, we fine-tune local variants such as Iowa WeedNet to target region-specific weed communities in the U.S. Midwest. Our evaluation addresses both intra-species diversity (different growth stages) and inter-species similarity (look-alike species), ensuring robust performance under real-world variability. We further validate WeedNet on images captured by drones and ground rovers, demonstrating its potential for deployment in robotic platforms. Beyond field applications, we integrate a conversational AI to enable practical decision-support tools for farmers, agronomists, researchers, and land managers worldwide. These advances position WeedNet as a foundational model for intelligent, scalable, and regionally adaptable weed management and ecological conservation.

About the Speaker

Timilehin Ayanlade is a Ph.D. candidate in the Self-aware Complex Systems Laboratory at Iowa State University, where his research focuses on developing machine learning and computer vision methods for agricultural applications. His work integrates multimodal data across ground-based sensing, UAV, and satellite with advanced AI models to tackle challenges in weed identification, crop monitoring, and crop yield prediction.

Memory Matters: Early Alzheimer’s Detection with AI-Powered Mobile Tools

Advancements in artificial intelligence and mobile technology are transforming the landscape of neurodegenerative disease detection, offering new hope for early intervention in Alzheimer’s. By integrating machine learning algorithms with everyday mobile devices, we are entering a new era of accessible, scalable, and non-invasive tools for early Alzheimer’s detection In this talk, we’ll cover the potential of AI in health care systems, ethical considerations, plus an architecture, model, datasets and framework deep dive.

About the Speaker

Reetam Biswas has more than 18 years of experience in the IT industry as a software architect, currently working on AI.

Dec 4 - AI, ML and Computer Vision Meetup

Join the virtual Meetup to hear talks from experts on cutting-edge topics across AI, ML, and computer vision.

Register for the Zoom

Date and Time

Dec 4, 2025 9:00 - 11:00 AM Pacific

Benchmarking Vision-Language Models for Autonomous Driving Safety

This workshop introduces a unified framework for evaluating how vision-language models handle driving safety. Using an enhanced BDDOIA dataset with scene, weather, and action labels, we benchmark models like Gemini, FastVLM, and Qwen within FiftyOne. Our results show consistent blind spots where models misjudge unsafe situations, highlighting the need for safer and more interpretable AI systems for autonomous driving.

About the Speaker

Adonai Vera - Machine Learning Engineer & DevRel at Voxel51. With over 7 years of experience building computer vision and machine learning models using TensorFlow\, Docker\, and OpenCV. I started as a software developer\, moved into AI\, led teams\, and served as CTO. Today\, I connect code and community to build open\, production-ready AI — making technology simple\, accessible\, and reliable.

TrueRice: AI-Powered Visual Quality Control for Rice Grains and Beyond at Scale

Agriculture remains one of the most under-digitized industries, yet grain quality control defines pricing, trust, and livelihoods for millions. TrueRice is an AI-powered analyzer that turns a flatbed scanner into a high-precision, 30-second QC engine, replacing the 2+ hours and subjectivity of manual quality inspection.

Built on a state-of-the-art 8K image processing pipeline with SAHI (Slicing Aided Hyper Inference), it detects fine-grained kernel defects at scale with high accuracy across grain size, shape, breakage, discoloration, and chalkiness. Now being extended to maize and coffee, TrueRice showcases how cross-crop transfer learning and frugal AI engineering can scale precision QC for farmers, millers, and exporters. This talk will cover the design principles, model architecture choices, and a live demonstration, while addressing challenges in data variability, regulatory standards, and cross-crop adaptation.

About the Speaker

Sai Jeevan Puchakayala is an Interdisciplinary AI/ML Consultant, Researcher, and Tech Lead at Sustainable Living Lab (SL2) India, where he drives development of applied AI solutions for agriculture, climate resilience, and sustainability. He led the engineering of TrueRice, an award-winning grain quality analyzer that won India’s first International Agri Hackathon 2025.

WeedNet: A Foundation Model Based Global-to-Local AI Approach for Real-Time Weed Species Identification and Classification

Early and accurate weed identification is critical for effective management, yet current AI-based approaches face challenges due to limited expert-verified datasets and the high variability in weed morphology across species and growth stages. We present WeedNet, a global-scale weed identification model designed to recognize a wide range of species, including noxious and invasive plants. WeedNet is an end-to-end real-time pipeline that integrates self-supervised pretraining, fine-tuning, and trustworthiness strategies to improve both accuracy and reliability.

Building on this foundation, we introduce a Global-to-Local strategy: while the Global WeedNet model provides broad generalization, we fine-tune local variants such as Iowa WeedNet to target region-specific weed communities in the U.S. Midwest. Our evaluation addresses both intra-species diversity (different growth stages) and inter-species similarity (look-alike species), ensuring robust performance under real-world variability. We further validate WeedNet on images captured by drones and ground rovers, demonstrating its potential for deployment in robotic platforms. Beyond field applications, we integrate a conversational AI to enable practical decision-support tools for farmers, agronomists, researchers, and land managers worldwide. These advances position WeedNet as a foundational model for intelligent, scalable, and regionally adaptable weed management and ecological conservation.

About the Speaker

Timilehin Ayanlade is a Ph.D. candidate in the Self-aware Complex Systems Laboratory at Iowa State University, where his research focuses on developing machine learning and computer vision methods for agricultural applications. His work integrates multimodal data across ground-based sensing, UAV, and satellite with advanced AI models to tackle challenges in weed identification, crop monitoring, and crop yield prediction.

Memory Matters: Early Alzheimer’s Detection with AI-Powered Mobile Tools

Advancements in artificial intelligence and mobile technology are transforming the landscape of neurodegenerative disease detection, offering new hope for early intervention in Alzheimer’s. By integrating machine learning algorithms with everyday mobile devices, we are entering a new era of accessible, scalable, and non-invasive tools for early Alzheimer’s detection In this talk, we’ll cover the potential of AI in health care systems, ethical considerations, plus an architecture, model, datasets and framework deep dive.

About the Speaker

Reetam Biswas has more than 18 years of experience in the IT industry as a software architect, currently working on AI.

Dec 4 - AI, ML and Computer Vision Meetup

Join the virtual Meetup to hear talks from experts on cutting-edge topics across AI, ML, and computer vision.

Register for the Zoom

Date and Time

Dec 4, 2025 9:00 - 11:00 AM Pacific

Benchmarking Vision-Language Models for Autonomous Driving Safety

This workshop introduces a unified framework for evaluating how vision-language models handle driving safety. Using an enhanced BDDOIA dataset with scene, weather, and action labels, we benchmark models like Gemini, FastVLM, and Qwen within FiftyOne. Our results show consistent blind spots where models misjudge unsafe situations, highlighting the need for safer and more interpretable AI systems for autonomous driving.

About the Speaker

Adonai Vera - Machine Learning Engineer & DevRel at Voxel51. With over 7 years of experience building computer vision and machine learning models using TensorFlow\, Docker\, and OpenCV. I started as a software developer\, moved into AI\, led teams\, and served as CTO. Today\, I connect code and community to build open\, production-ready AI — making technology simple\, accessible\, and reliable.

TrueRice: AI-Powered Visual Quality Control for Rice Grains and Beyond at Scale

Agriculture remains one of the most under-digitized industries, yet grain quality control defines pricing, trust, and livelihoods for millions. TrueRice is an AI-powered analyzer that turns a flatbed scanner into a high-precision, 30-second QC engine, replacing the 2+ hours and subjectivity of manual quality inspection.

Built on a state-of-the-art 8K image processing pipeline with SAHI (Slicing Aided Hyper Inference), it detects fine-grained kernel defects at scale with high accuracy across grain size, shape, breakage, discoloration, and chalkiness. Now being extended to maize and coffee, TrueRice showcases how cross-crop transfer learning and frugal AI engineering can scale precision QC for farmers, millers, and exporters. This talk will cover the design principles, model architecture choices, and a live demonstration, while addressing challenges in data variability, regulatory standards, and cross-crop adaptation.

About the Speaker

Sai Jeevan Puchakayala is an Interdisciplinary AI/ML Consultant, Researcher, and Tech Lead at Sustainable Living Lab (SL2) India, where he drives development of applied AI solutions for agriculture, climate resilience, and sustainability. He led the engineering of TrueRice, an award-winning grain quality analyzer that won India’s first International Agri Hackathon 2025.

WeedNet: A Foundation Model Based Global-to-Local AI Approach for Real-Time Weed Species Identification and Classification

Early and accurate weed identification is critical for effective management, yet current AI-based approaches face challenges due to limited expert-verified datasets and the high variability in weed morphology across species and growth stages. We present WeedNet, a global-scale weed identification model designed to recognize a wide range of species, including noxious and invasive plants. WeedNet is an end-to-end real-time pipeline that integrates self-supervised pretraining, fine-tuning, and trustworthiness strategies to improve both accuracy and reliability.

Building on this foundation, we introduce a Global-to-Local strategy: while the Global WeedNet model provides broad generalization, we fine-tune local variants such as Iowa WeedNet to target region-specific weed communities in the U.S. Midwest. Our evaluation addresses both intra-species diversity (different growth stages) and inter-species similarity (look-alike species), ensuring robust performance under real-world variability. We further validate WeedNet on images captured by drones and ground rovers, demonstrating its potential for deployment in robotic platforms. Beyond field applications, we integrate a conversational AI to enable practical decision-support tools for farmers, agronomists, researchers, and land managers worldwide. These advances position WeedNet as a foundational model for intelligent, scalable, and regionally adaptable weed management and ecological conservation.

About the Speaker

Timilehin Ayanlade is a Ph.D. candidate in the Self-aware Complex Systems Laboratory at Iowa State University, where his research focuses on developing machine learning and computer vision methods for agricultural applications. His work integrates multimodal data across ground-based sensing, UAV, and satellite with advanced AI models to tackle challenges in weed identification, crop monitoring, and crop yield prediction.

Memory Matters: Early Alzheimer’s Detection with AI-Powered Mobile Tools

Advancements in artificial intelligence and mobile technology are transforming the landscape of neurodegenerative disease detection, offering new hope for early intervention in Alzheimer’s. By integrating machine learning algorithms with everyday mobile devices, we are entering a new era of accessible, scalable, and non-invasive tools for early Alzheimer’s detection In this talk, we’ll cover the potential of AI in health care systems, ethical considerations, plus an architecture, model, datasets and framework deep dive.

About the Speaker

Reetam Biswas has more than 18 years of experience in the IT industry as a software architect, currently working on AI.

Dec 4 - AI, ML and Computer Vision Meetup

Join the virtual Meetup to hear talks from experts on cutting-edge topics across AI, ML, and computer vision.

Register for the Zoom

Date and Time

Dec 4, 2025 9:00 - 11:00 AM Pacific

Benchmarking Vision-Language Models for Autonomous Driving Safety

This workshop introduces a unified framework for evaluating how vision-language models handle driving safety. Using an enhanced BDDOIA dataset with scene, weather, and action labels, we benchmark models like Gemini, FastVLM, and Qwen within FiftyOne. Our results show consistent blind spots where models misjudge unsafe situations, highlighting the need for safer and more interpretable AI systems for autonomous driving.

About the Speaker

Adonai Vera - Machine Learning Engineer & DevRel at Voxel51. With over 7 years of experience building computer vision and machine learning models using TensorFlow\, Docker\, and OpenCV. I started as a software developer\, moved into AI\, led teams\, and served as CTO. Today\, I connect code and community to build open\, production-ready AI — making technology simple\, accessible\, and reliable.

TrueRice: AI-Powered Visual Quality Control for Rice Grains and Beyond at Scale

Agriculture remains one of the most under-digitized industries, yet grain quality control defines pricing, trust, and livelihoods for millions. TrueRice is an AI-powered analyzer that turns a flatbed scanner into a high-precision, 30-second QC engine, replacing the 2+ hours and subjectivity of manual quality inspection.

Built on a state-of-the-art 8K image processing pipeline with SAHI (Slicing Aided Hyper Inference), it detects fine-grained kernel defects at scale with high accuracy across grain size, shape, breakage, discoloration, and chalkiness. Now being extended to maize and coffee, TrueRice showcases how cross-crop transfer learning and frugal AI engineering can scale precision QC for farmers, millers, and exporters. This talk will cover the design principles, model architecture choices, and a live demonstration, while addressing challenges in data variability, regulatory standards, and cross-crop adaptation.

About the Speaker

Sai Jeevan Puchakayala is an Interdisciplinary AI/ML Consultant, Researcher, and Tech Lead at Sustainable Living Lab (SL2) India, where he drives development of applied AI solutions for agriculture, climate resilience, and sustainability. He led the engineering of TrueRice, an award-winning grain quality analyzer that won India’s first International Agri Hackathon 2025.

WeedNet: A Foundation Model Based Global-to-Local AI Approach for Real-Time Weed Species Identification and Classification

Early and accurate weed identification is critical for effective management, yet current AI-based approaches face challenges due to limited expert-verified datasets and the high variability in weed morphology across species and growth stages. We present WeedNet, a global-scale weed identification model designed to recognize a wide range of species, including noxious and invasive plants. WeedNet is an end-to-end real-time pipeline that integrates self-supervised pretraining, fine-tuning, and trustworthiness strategies to improve both accuracy and reliability.

Building on this foundation, we introduce a Global-to-Local strategy: while the Global WeedNet model provides broad generalization, we fine-tune local variants such as Iowa WeedNet to target region-specific weed communities in the U.S. Midwest. Our evaluation addresses both intra-species diversity (different growth stages) and inter-species similarity (look-alike species), ensuring robust performance under real-world variability. We further validate WeedNet on images captured by drones and ground rovers, demonstrating its potential for deployment in robotic platforms. Beyond field applications, we integrate a conversational AI to enable practical decision-support tools for farmers, agronomists, researchers, and land managers worldwide. These advances position WeedNet as a foundational model for intelligent, scalable, and regionally adaptable weed management and ecological conservation.

About the Speaker

Timilehin Ayanlade is a Ph.D. candidate in the Self-aware Complex Systems Laboratory at Iowa State University, where his research focuses on developing machine learning and computer vision methods for agricultural applications. His work integrates multimodal data across ground-based sensing, UAV, and satellite with advanced AI models to tackle challenges in weed identification, crop monitoring, and crop yield prediction.

Memory Matters: Early Alzheimer’s Detection with AI-Powered Mobile Tools

Advancements in artificial intelligence and mobile technology are transforming the landscape of neurodegenerative disease detection, offering new hope for early intervention in Alzheimer’s. By integrating machine learning algorithms with everyday mobile devices, we are entering a new era of accessible, scalable, and non-invasive tools for early Alzheimer’s detection In this talk, we’ll cover the potential of AI in health care systems, ethical considerations, plus an architecture, model, datasets and framework deep dive.

About the Speaker

Reetam Biswas has more than 18 years of experience in the IT industry as a software architect, currently working on AI.

Dec 4 - AI, ML and Computer Vision Meetup

Slack achieved 99% AI adoption by moving from experimentation to production-scale developer tools on Amazon Bedrock. Discover their journey deploying Claude Code and Cursor for accelerated development workflows, then building multi-agent systems with Strands Agents to automate escalation resolution at scale. Learn how Bedrock's Knowledge Bases and Guardrails enabled secure, governed AI deployment while custom MCP servers integrated internal tooling. Slack's approach combines developer acceleration with production agentic workflows, delivering measurable impact across PR throughput, code quality, and support automation. Walk away with practical patterns for scaling AI adoption in enterprise engineering organizations.

Learn more: More AWS events: https://go.aws/3kss9CP

Subscribe: More AWS videos: http://bit.ly/2O3zS75 More AWS events videos: http://bit.ly/316g9t4

ABOUT AWS: Amazon Web Services (AWS) hosts events, both online and in-person, bringing the cloud computing community together to connect, collaborate, and learn from AWS experts. AWS is the world's most comprehensive and broadly adopted cloud platform, offering over 200 fully featured services from data centers globally. Millions of customers—including the fastest-growing startups, largest enterprises, and leading government agencies—are using AWS to lower costs, become more agile, and innovate faster.

AWSreInvent #AWSreInvent2025 #AWS

Agile/Scrum AI/ML AWS Cloud Computing
AWS re:Invent 2024

Mastering nodes, integrations, debugging, and deployment through a real-world AI content automation project — Moein Foroughi

​In this hands-on workshop, we’ll go beyond drag-and-drop demos — exploring how n8n really works under the hood, how to connect it with external APIs and databases, debug complex flows, and manage production-grade deployments.

​Along the way, we’ll build a real, functional project: an AI-assisted article writer that integrates search, scraping, and structured data storage. This project serves as a practical example to apply every key concept of n8n — from node logic and credentials management to error handling, scaling, and containerisation.

​We’ll cover the following steps:

  • ​How n8n works and how to use its core nodes effectively
  • ​Connecting n8n with APIs, databases, and external tools
  • ​Building and troubleshooting real workflows
  • ​Setting up n8n with Docker and basic deployment tips
  • ​Creating a simple AI-powered SEO article writer as a hands-on project

​By the end, you’ll know how to build and run powerful n8n workflows that connect seamlessly with modern AI tools, data systems and tools.

Level: ​Beginner to Intermediate — basic familiarity with Docker, Linux, and modern AI tools will help you get the most out of the session, but all key concepts will be introduced from first principles. ​

About the speaker:

Moein Foroughi is a DevOps engineer focused on automation and scalable systems, with a professional interest in applying AI and modern technologies to improve engineering workflows and operational efficiency.

n8n: From Fundamentals to Building Intelligent Automation Pipeline
PyData x Pipple Meetup 2025-11-18 · 16:30

Please register here: https://pipple.nl/en/pydata-x-pipple-meetup/

The power of data and AI in practice

AI goes beyond experiments and isolated analyses. During this meetup, speakers from Pipple and PyData Eindhoven will share concrete cases and technical learnings from practice, from data model to deployment. Discover how organisations are making the transition from smart analyses to solutions that are actually used: reliable, scalable and with practical impact.

Meet the community, share your knowledge

Together with PyData Eindhoven, we are bringing data scientists, engineers and AI professionals together for an evening full of content and inspiration. Expect three technical talks, practical examples and valuable conversations with colleagues who work daily on the theme of from data to production.

| 17:30-18:00 | Walk-in & welcome | | ----------- | ----------------- | | 18:00-18:15 | Intro PyData Eindhoven & Pipple | | 18:15-18:45 | From code to production: how to keep pipelines running smoothly at scale

In this talk, Yannick and Joshua will share how they designed and evolved the CI/CD pipelines that power a global retailer’s data platform across 30+ countries. From the first setup to today’s architecture, they’ll dive into what worked, what didn’t, and why. Expect real-world lessons around dbt, Terraform, and security – from failed builds to the automation wins that finally made life easier.

This session offers practical insights for anyone working with data:from engineers maintaining pipelines to analysts and ML developers relying on them. | | 18:45-19:00 | Break & pizza 🍕 | | 19:00-19:30 | Learnings from integrating AI within CyberBench: the good, the bad and the ugly

In this talk, Lucas shares his journey of building CyberBench: a framework that automatically benchmarks Large Language Models (LLMs) for direct security risks such as prompt injections and data leaks.

After a brief introduction to the cybersecurity risks of GenAI systems and the motivation behind CyberBench, Lucas dives into the technical lessons learned from integrating LLM-based components into a software system. Expect practical insights into building reliable and efficient LLM pipelines and lessons on what worked (and what didn’t).

In short: learn to maximize the good, minimize the bad, and make the ugly a little prettier when building LLM systems in production. | | 19:30-20:00 | Speaker 3 – to be announced! |

PyData x Pipple Meetup
Nov 13 - Women in AI 2025-11-13 · 17:00

Hear talks from experts on the latest topics in AI, ML, and computer vision on November 13.

Date and Location

Nov 13, 2025 9 AM Pacific Online. Register for the Zoom!

Copy, Paste, Customize! The Template Approach to AI Engineering

Most AI implementations fail because teams treat prompt engineering as ad-hoc experimentation rather than systematic software engineering, leading to unreliable systems that don't scale beyond proof-of-concepts. This talk demonstrates engineering practices that enable reliable AI deployment through standardized prompt templates, systematic validation frameworks, and production observability.

Drawing from experience developing fillable prompt templates currently being validated in production environments processing thousands of submissions, I'll share how Infrastructure as Code principles apply to LLM workflows, why evaluation metrics like BLEU scores are critical for production reliability, and how systematic failure analysis prevents costly deployment issues. Attendees will walk away with understanding of practical frameworks for improving AI system reliability and specific strategies for building more consistent, scalable AI implementations.

About the Speaker

Jeanne McClure is a postdoctoral scholar at NC State's Data Science and AI Academy with expertise in systematic AI implementation and validation. Her research transforms experimental AI tools into reliable production systems through standardized prompt templates, rigorous testing frameworks, and systematic failure analysis. She holds a PhD in Learning, Design and Technology with additional graduate work in data science.

Multimodality with Biases: Understand and Evaluate VLMs for Autonomous Driving with FiftyOne

Do your VLMs really see danger? With FiftyOne, I’ll show you how to understand and evaluate vision-language models for autonomous driving — making risk and bias visible in seconds. We’ll compare models on the same scenes, reveal failures and edge cases, and you’ll see a simple dashboard to decide which data to curate and what to adjust. You’ll leave with a clear, practical, and replicable method to raise the bar for safety.

About the Speaker

Paula Ramos has a PhD in Computer Vision and Machine Learning, with more than 20 years of experience in the technological field. She has been developing novel integrated engineering technologies, mainly in Computer Vision, robotics, and Machine Learning applied to agriculture, since the early 2000s in Colombia.

The Heart of Innovation: Women, AI, and the Future of Healthcare

This session explores how Artificial Intelligence is transforming healthcare by enhancing diagnosis, treatment, and patient outcomes. It highlights the importance of diverse and female perspectives in shaping AI solutions that are ethical, empathetic, and human-centered. We will discuss key applications, current challenges, and the future potential of AI in medicine. It’s a forward-looking conversation about how innovation can build a healthier world.

About the Speaker

Karen Sanchez is a Postdoctoral Researcher at the Center of Excellence for Generative AI at King Abdullah University of Science and Technology (KAUST), Saudi Arabia. Her research focuses on AI for Science, spanning computer vision, video understanding, and privacy-preserving machine learning. She is also an active advocate for diversity and outreach in AI, contributing to global initiatives that connect researchers and amplify underrepresented voices in technology.

Language Diffusion Models

Autoregressive models (ARMs) are widely regarded as the cornerstone of large language models (LLMs). Challenge this notion by introducing LLaDA, a diffusion model trained from scratch under the pre-training and supervised fine-tuning (SFT) paradigm. LLaDA models distributions through a forward data masking process and a reverse process, parameterized by a vanilla Transformer to predict masked tokens.

Optimizing a likelihood bound provides a principled generative approach for probabilistic inference. Across extensive benchmarks, LLaDA demonstrates strong scalability, outperforming self-constructed ARM baselines. Remarkably, LLaDA 8B is competitive with strong LLMs like LLaMA3 8B in in-context learning and, after SFT, exhibits impressive instruction-following abilities in case studies such as multi-turn dialogue.

About the Speaker

Jayita Bhattacharyya is an AI/ML Nerd with a blend of technical speaking & hackathon wizardry! Applying tech to solve real-world problems. The work focus these days is on generative AI. Helping software teams incorporate AI into transforming software engineering.

Nov 13 - Women in AI
Nov 13 - Women in AI 2025-11-13 · 17:00

Hear talks from experts on the latest topics in AI, ML, and computer vision on November 13.

Date and Location

Nov 13, 2025 9 AM Pacific Online. Register for the Zoom!

Copy, Paste, Customize! The Template Approach to AI Engineering

Most AI implementations fail because teams treat prompt engineering as ad-hoc experimentation rather than systematic software engineering, leading to unreliable systems that don't scale beyond proof-of-concepts. This talk demonstrates engineering practices that enable reliable AI deployment through standardized prompt templates, systematic validation frameworks, and production observability.

Drawing from experience developing fillable prompt templates currently being validated in production environments processing thousands of submissions, I'll share how Infrastructure as Code principles apply to LLM workflows, why evaluation metrics like BLEU scores are critical for production reliability, and how systematic failure analysis prevents costly deployment issues. Attendees will walk away with understanding of practical frameworks for improving AI system reliability and specific strategies for building more consistent, scalable AI implementations.

About the Speaker

Jeanne McClure is a postdoctoral scholar at NC State's Data Science and AI Academy with expertise in systematic AI implementation and validation. Her research transforms experimental AI tools into reliable production systems through standardized prompt templates, rigorous testing frameworks, and systematic failure analysis. She holds a PhD in Learning, Design and Technology with additional graduate work in data science.

Multimodality with Biases: Understand and Evaluate VLMs for Autonomous Driving with FiftyOne

Do your VLMs really see danger? With FiftyOne, I’ll show you how to understand and evaluate vision-language models for autonomous driving — making risk and bias visible in seconds. We’ll compare models on the same scenes, reveal failures and edge cases, and you’ll see a simple dashboard to decide which data to curate and what to adjust. You’ll leave with a clear, practical, and replicable method to raise the bar for safety.

About the Speaker

Paula Ramos has a PhD in Computer Vision and Machine Learning, with more than 20 years of experience in the technological field. She has been developing novel integrated engineering technologies, mainly in Computer Vision, robotics, and Machine Learning applied to agriculture, since the early 2000s in Colombia.

The Heart of Innovation: Women, AI, and the Future of Healthcare

This session explores how Artificial Intelligence is transforming healthcare by enhancing diagnosis, treatment, and patient outcomes. It highlights the importance of diverse and female perspectives in shaping AI solutions that are ethical, empathetic, and human-centered. We will discuss key applications, current challenges, and the future potential of AI in medicine. It’s a forward-looking conversation about how innovation can build a healthier world.

About the Speaker

Karen Sanchez is a Postdoctoral Researcher at the Center of Excellence for Generative AI at King Abdullah University of Science and Technology (KAUST), Saudi Arabia. Her research focuses on AI for Science, spanning computer vision, video understanding, and privacy-preserving machine learning. She is also an active advocate for diversity and outreach in AI, contributing to global initiatives that connect researchers and amplify underrepresented voices in technology.

Language Diffusion Models

Autoregressive models (ARMs) are widely regarded as the cornerstone of large language models (LLMs). Challenge this notion by introducing LLaDA, a diffusion model trained from scratch under the pre-training and supervised fine-tuning (SFT) paradigm. LLaDA models distributions through a forward data masking process and a reverse process, parameterized by a vanilla Transformer to predict masked tokens.

Optimizing a likelihood bound provides a principled generative approach for probabilistic inference. Across extensive benchmarks, LLaDA demonstrates strong scalability, outperforming self-constructed ARM baselines. Remarkably, LLaDA 8B is competitive with strong LLMs like LLaMA3 8B in in-context learning and, after SFT, exhibits impressive instruction-following abilities in case studies such as multi-turn dialogue.

About the Speaker

Jayita Bhattacharyya is an AI/ML Nerd with a blend of technical speaking & hackathon wizardry! Applying tech to solve real-world problems. The work focus these days is on generative AI. Helping software teams incorporate AI into transforming software engineering.

Nov 13 - Women in AI
Nov 13 - Women in AI 2025-11-13 · 17:00

Hear talks from experts on the latest topics in AI, ML, and computer vision on November 13.

Date and Location

Nov 13, 2025 9 AM Pacific Online. Register for the Zoom!

Copy, Paste, Customize! The Template Approach to AI Engineering

Most AI implementations fail because teams treat prompt engineering as ad-hoc experimentation rather than systematic software engineering, leading to unreliable systems that don't scale beyond proof-of-concepts. This talk demonstrates engineering practices that enable reliable AI deployment through standardized prompt templates, systematic validation frameworks, and production observability.

Drawing from experience developing fillable prompt templates currently being validated in production environments processing thousands of submissions, I'll share how Infrastructure as Code principles apply to LLM workflows, why evaluation metrics like BLEU scores are critical for production reliability, and how systematic failure analysis prevents costly deployment issues. Attendees will walk away with understanding of practical frameworks for improving AI system reliability and specific strategies for building more consistent, scalable AI implementations.

About the Speaker

Jeanne McClure is a postdoctoral scholar at NC State's Data Science and AI Academy with expertise in systematic AI implementation and validation. Her research transforms experimental AI tools into reliable production systems through standardized prompt templates, rigorous testing frameworks, and systematic failure analysis. She holds a PhD in Learning, Design and Technology with additional graduate work in data science.

Multimodality with Biases: Understand and Evaluate VLMs for Autonomous Driving with FiftyOne

Do your VLMs really see danger? With FiftyOne, I’ll show you how to understand and evaluate vision-language models for autonomous driving — making risk and bias visible in seconds. We’ll compare models on the same scenes, reveal failures and edge cases, and you’ll see a simple dashboard to decide which data to curate and what to adjust. You’ll leave with a clear, practical, and replicable method to raise the bar for safety.

About the Speaker

Paula Ramos has a PhD in Computer Vision and Machine Learning, with more than 20 years of experience in the technological field. She has been developing novel integrated engineering technologies, mainly in Computer Vision, robotics, and Machine Learning applied to agriculture, since the early 2000s in Colombia.

The Heart of Innovation: Women, AI, and the Future of Healthcare

This session explores how Artificial Intelligence is transforming healthcare by enhancing diagnosis, treatment, and patient outcomes. It highlights the importance of diverse and female perspectives in shaping AI solutions that are ethical, empathetic, and human-centered. We will discuss key applications, current challenges, and the future potential of AI in medicine. It’s a forward-looking conversation about how innovation can build a healthier world.

About the Speaker

Karen Sanchez is a Postdoctoral Researcher at the Center of Excellence for Generative AI at King Abdullah University of Science and Technology (KAUST), Saudi Arabia. Her research focuses on AI for Science, spanning computer vision, video understanding, and privacy-preserving machine learning. She is also an active advocate for diversity and outreach in AI, contributing to global initiatives that connect researchers and amplify underrepresented voices in technology.

Language Diffusion Models

Autoregressive models (ARMs) are widely regarded as the cornerstone of large language models (LLMs). Challenge this notion by introducing LLaDA, a diffusion model trained from scratch under the pre-training and supervised fine-tuning (SFT) paradigm. LLaDA models distributions through a forward data masking process and a reverse process, parameterized by a vanilla Transformer to predict masked tokens.

Optimizing a likelihood bound provides a principled generative approach for probabilistic inference. Across extensive benchmarks, LLaDA demonstrates strong scalability, outperforming self-constructed ARM baselines. Remarkably, LLaDA 8B is competitive with strong LLMs like LLaMA3 8B in in-context learning and, after SFT, exhibits impressive instruction-following abilities in case studies such as multi-turn dialogue.

About the Speaker

Jayita Bhattacharyya is an AI/ML Nerd with a blend of technical speaking & hackathon wizardry! Applying tech to solve real-world problems. The work focus these days is on generative AI. Helping software teams incorporate AI into transforming software engineering.

Nov 13 - Women in AI