talk-data.com talk-data.com

Filter by Source

Select conferences and events

People (143 results)

See all 143 →
Showing 7 results

Activities & events

Title & Speakers Event
Will Martin – PhD / EMEA Evangelist @ Dremio

While Kafka excels at streaming data, the real challenge lies in making that data analytically useful without sacrificing consistency or performance. This talk explores why Apache Iceberg has emerged as the ideal streaming destination, offering ACID transactions, schema evolution, and time travel capabilities that traditional data lakes can't match. Learn about some foundational tools that enable streaming pipelines and why they all converge on this next-generation table format built for flexibility and scalability.

Kafka apache iceberg
IN PERSON: Tooling for running Apache Kafka in Production
Anton Borisov – Principal Data Engineer @ Fresha

The next generation of streaming isn't about faster pipelines, but about smarter connections. DeltaJoin, a new operator in Apache Flink, reimagines stream joins by moving from brute-force state to change-driven computation. Paired with Fluss, Flink's purpose-built storage layer, it enables systems that are real-time, scalable, and cost-efficient. Anton will show how DeltaJoin and Fluss shift streaming architecture from ephemeral flows to durable, queryable state that bridges real-time processing with lakehouse patterns. Drawing on production experience, he'll demonstrate how these innovations reduce join costs, simplify architectures, and unlock new possibilities for real-time analytics. Attendees will leave with a vision of Flink 2.x as the backbone for event-driven systems and modern data platforms.

flink deltajoin fluss real-time streaming lakehouse
Message Tracking, Fluss in Apache Flink 2.x, & Kafka-to-Iceberg Transformation
Anton Borisov – Principal Data Engineer @ Fresha

The next generation of streaming isn't about faster pipelines, but about smarter connections. DeltaJoin, a new operator in Apache Flink, reimagines stream joins by moving from brute-force state to change-driven computation. Paired with Fluss, Flink's purpose-built storage layer, it enables systems that are real-time, scalable, and cost-efficient. Anton will show how DeltaJoin and Fluss shift streaming architecture from ephemeral flows to durable, queryable state that bridges real-time processing with lakehouse patterns. Drawing on production experience, he'll demonstrate how these innovations reduce join costs, simplify architectures, and unlock new possibilities for real-time analytics. Attendees will leave with a vision of Flink 2.x as the backbone for event-driven systems and modern data platforms.

flink deltajoin fluss
Scott Corrigan – VP Technology Services @ meshIQ

In this session, see how meshIQ, a comprehensive management and observability platform for messaging and event streaming technologies like Kafka, RabbitMQ and IBM MQ, can be used to track application message flows, help identify bottlenecks and locate missing messages.

meshiq Kafka rabbitmq ibm mq messaging event streaming
Scott Corrigan – VP Technology Services @ meshIQ

In this session, see how meshIQ, a comprehensive management and observability platform for messaging and event streaming technologies like Kafka, RabbitMQ and IBM MQ, can be used to track application message flows, help identify bottlenecks and locate "missing" messages.

Kafka rabbitmq ibm mq messaging event streaming
Message Tracking, Fluss in Apache Flink 2.x, & Kafka-to-Iceberg Transformation
Florian Hussonnois – Lead Software Engineer @ Kestra

Dans cette présentation, je vous propose de découvrir Jikkou : un framework open-source qui permet aux développeurs et aux équipes DevOps de gérer, d'automatiser et de provisionner facilement toutes les ressources nécessaires à leur plateforme Apache Kafka, le tout en adoptant une approche Resource-as-Code ! NB : Si vous devez ouvrir un ticket Jira ou envoyer un email à votre équipe support Kafka pour créer un topic, ce talk est fait pour vous !

Kafka jikkou
Scott Corrigan – VP Technology Services @ meshIQ

Un nombre croissant d'applications s'appuient sur Kafka pour sa fiabilité et le haut débit de son traitement des flux d'événements, dans des cas d'utilisation allant de l'analyse des flux de clics à l'intégration d'applications et à l'analyse en temps réel des données en mouvement. Alors que l'adoption de Kafka par les entreprises continue de croître, 90 % des implémentations nécessitent que Kafka fonctionne avec d'autres technologies de messagerie telles qu'IBM MQ, RabbitMQ, ActiveMQ et autres. Comment obtenir une visibilité et une surveillance de bout en bout pour les transactions couvrant les technologiques aussi diverses ? Dans cette présentation, nous discuterons des moyens d'assurer l'observabilité et la gestion d'infrastructures complexes de messagerie et de streaming afin d’éliminer les temps d'arrêt, fournir des topologies de flux de messages d'applications et le lignage des données.

Kafka ibm mq rabbitmq activemq
Showing 7 results