talk-data.com talk-data.com

Filter by Source

Select conferences and events

People (1 result)

Showing 4 results

Activities & events

Title & Speakers Event

Join us for a live, interactive session with Viktor Gamov, co-author of Enterprise Web Development from O'Reilly and Apache Kafka® in Action from Manning, Java Champion and Principal Developer Advocate at Confluent.

More details coming soon! RSVP so you don't miss out on this interactive session. 💥

Youtube live stream link: https://www.youtube.com/watch?v=nP7L8EIa_7s

VIRTUAL Apache Flink®️ Meetup w/Viktor Gamov

Merci de penser à libérer vos places minimum la veille de l'évènement, si vous ne pouvez pas venir.

Agenda

  • Ouverture des portes
  • Update sur Elastic (5 minutes)
  • Talk1: Supervision des paiements de bout en bout avec Elastic (20 minutes)
  • Talk2: Visualizing Realtime Stock Data with Streamlit, Apache Kafka®, and Apache Flink®
  • Talk3: Elasticsearch Query Language: ES\|QL in action (20 minutes)
  • Food & drinks

Supervision des paiements de bout en bout avec Elastic Par Valentin Costet et Roland Ramanantsoa, Radès

Utilisation de la suite Elastic afin de superviser des paiements de bout en bout et les logiques métiers complexes associées.

Visualizing Realtime Stock Data with Streamlit, Apache Kafka®, and Apache Flink® Par Lucia Cerchie, Confluent

Let’s say you want to create a realtime visualization of a Kafka data stream. Maybe you want to process it with FlinkSQL before visualizing it.

Your keyboard clatters, “mkdir data_viz_with_kafka_and_flinksql”. You cd in, activate your virtual environment, crack your knuckles, and… the complexities hit. How to create open connections to your data stream? Feed the data into a frontend component? What happens when multithreading rears its ugly head? Your feelings of bravado slowly dissipate… Don’t worry, I’ve got you covered!

In this session, we’ll cover how to take a stream of data in Kafka and visualize it with Streamlit. It’s sourced from the Alpaca API, before being sent to Kafka and processed with FlinkSQL for surfacing the Streamlit component. We’ll go through the ins and outs of creating Kafka producers and consumers in python, processing realtime data via windowing using FlinkSQL in Confluent Cloud, and visualizing that data clearly for an audience using a component built with Streamlit.

By the end of the talk, attendees will be confident in creating live data visualizations using Kafka, FlinkSQL, and Streamlit and be equipped to take their realtime use cases to the next level.

Elasticsearch Query Language: ES\|QL in action Par David Pilato, Elastic

Dans cette session sans slides, nous découvrirons par la pratique ce qu'apporte le nouveau language ES|QL pour aller fouiller dans nos données indexées dans Elasticsearch et ce, de façon interactive et visuelle. ES|QL et surtout le nouveau moteur derrière l'API _query apportent à la fois une syntaxe simplifiée permettant d'affiner vos résultats, étape par étape et ajouter de nouvelles fonctionnalités comme par exemple l'enrichissement de données et la transformation à la volée, directement dans votre requête, mais également des performances inégalées.

Meetup ElasticFR #92 - Rades, Kafka, ES|QL
Raghav Nehru – Director & Practitioner @ Platformatory

This talk walks through the process of creating real-time data pipelines using Flink. It introduces how to connect Flink with various data sources (like Kafka, or relational databases), focusing on transforming and enriching data streams. This talk is useful for understanding how Flink integrates with other components in a typical data processing pipeline.

flink Kafka
Robert Metzger – Staff Software Engineer II @ Confluent

Stream Processing has evolved quickly in a short time: only a few years ago, stream processing was mostly simple real-time aggregations with limited throughput and consistency. Today, many stream processing applications have sophisticated business logic, strict correctness guarantees, high performance, low latency, and maintain terabytes of state without databases. Stream processing frameworks also abstract a lot of the low-level details away, such as routing the data streams, taking care of concurrent executions, and handling various failure scenarios while ensuring correctness.

This talk will give an introduction into Apache Flink, one of the most advanced open source stream processors that powers applications in Netflix, Uber, and Alibaba among others. In particular, we will go through the use cases that Flink was designed for, explain concepts like stateful and event-time stream processing, and discuss Flink's APIs and ecosystem.

flink Kafka
Showing 4 results