talk-data.com talk-data.com

C

Speaker

Corey Nolet

2

talks

Principal Architect Nvidia

Filter by Event / Source

Talks & appearances

2 activities · Newest first

Search activities →

This session offers a technical deep dive of the state-of-art AlloyDB AI capabilities for building highly accurate and relevant generative AI applications using real-time data. We’ll cover vector search using Google Research’s ScaNN index technology and cover how you can utilize Gemini from AlloyDB operators to seamlessly integrate into your application. Discover AlloyDB AI natural language feature, a new way to interact with databases and how it accurately and securely answers your questions. Also learn about the latest research between Google and NVIDIA on GPU-accelerated vector index builds in databases.

NVIDIA GPUs accelerate batch ETL workloads at significant cost savings and performance. In this session, we will delve into optimizing Apache Spark on GCP Dataproc using the G2 accelerator-optimized series with L4 GPUs via RAPIDS Accelerator For Apache Spark, showcasing up to 14x speedups and 80% cost reductions for Spark applications. We will demonstrate this acceleration through a reference AI architecture on financial transaction fraud detection, and go through performance measurements.

Unstructured data makes up the majority of all new data; a trend that's been growing exponentially since 2018. At these volumes, vector embeddings require indexes to be trained so that nearest neighbors can be efficiently approximated, avoiding the need for exhaustive lookups. However, training these indexes puts intense demand on vector databases to maintain a high ingest throughput. In this session, we will explain how the NVIDIA cuVS library is turbo charging vector database ingest with GPUs, providing speedups from 5-20x and improving data readiness.

This Session is hosted by a Google Cloud Next Sponsor.
Visit your registration profile at g.co/cloudnext to opt out of sharing your contact information with the sponsor hosting this session.