This session explores the evolution of data management on Kubernetes for AI and machine learning (ML) workloads and modern databases, including Google’s leadership in this space. We’ll discuss key challenges and solutions, including persistent storage with solutions like checkpointing and Cloud Storage FUSE, and accelerating data access with caching. Customers Qdrant and Codeway will share how they’ve successfully leveraged these technologies to improve their AI, ML, and database performance on Google Kubernetes Engine (GKE).
talk-data.com
Speaker
Brian Kaufman
2
talks
Filter by Event / Source
Talks & appearances
2 activities · Newest first
As generative AI applications mature, retrieval-augmented generation (RAG) has become popular for improving large language model-based apps. We expect teams to move beyond basic RAG to autonomous agents and generative loops. We'll set up a Weaviate vector database on Google Kubernetes Engine (GKE) and Gemini to showcase generative feedback loops.
After this session, a Google Cloud GKE user should be able to:
- Deploy Weaviate open source on GKE
- Set up a pipeline to ingest data from the Cloud Storage bucket
- Query, RAG, and enhance the responses
Click the blue “Learn more” button above to tap into special offers designed to help you implement what you are learning at Google Cloud Next 25.