talk-data.com talk-data.com

Susan Shu Chang

Speaker

Susan Shu Chang

3

talks

author

Filter by Event / Source

Talks & appearances

3 activities · Newest first

Search activities →
Evaluating AI Agents in production with Python

This talk covers methods of evaluating AI Agents, with an example of how the speakers built a Python-based evaluation framework for a user-facing AI Agent system which has been in production for over a year. We share tools and Python frameworks used (as well as tradeoffs and alternatives), and discuss methods such as LLM-as-Judge, rules-based evaluations, ML metrics used, as well as selection tradeoffs.

Machine Learning Interviews

As tech products become more prevalent today, the demand for machine learning professionals continues to grow. But the responsibilities and skill sets required of ML professionals still vary drastically from company to company, making the interview process difficult to predict. In this guide, data science leader Susan Shu Chang shows you how to tackle the ML hiring process. Having served as principal data scientist in several companies, Chang has considerable experience as both ML interviewer and interviewee. She'll take you through the highly selective recruitment process by sharing hard-won lessons she learned along the way. You'll quickly understand how to successfully navigate your way through typical ML interviews. This guide shows you how to: Explore various machine learning roles, including ML engineer, applied scientist, data scientist, and other positions Assess your interests and skills before deciding which ML role(s) to pursue Evaluate your current skills and close any gaps that may prevent you from succeeding in the interview process Acquire the skill set necessary for each machine learning role Ace ML interview topics, including coding assessments, statistics and machine learning theory, and behavioral questions Prepare for interviews in statistics and machine learning theory by studying common interview questions

In this keynote, I will share the lessons learned from using Python in 4 industries. Apart from machine learning applications that I build in my day to day as a data scientist and machine learning engineer, I also use Python to develop games for my own gaming company, Quill Game Studios. There is a lot of versatility in Python, and it's been my pleasure to use it to solve many interesting problems. I hope that this talk can give inspiration to various types of applications in your own industry as well.