talk-data.com talk-data.com

Description

As teams scale their Airflow workflows, a common question is: “My DAG has 5,000 tasks—how long will it take to run in Airflow?” Beyond execution time, users often face challenges with dynamically generated DAGs, such as: Delayed visualization in the Airflow UI after deployment. High resource consumption, leading to Kubernetes pod evictions and out-of-memory errors. While estimating the resource utilization in a distributed data platform is complex, benchmarking can provide crucial insights. In this talk, we’ll share our approach to benchmarking dynamically generated DAGs with Astronomer Cosmos ( https://github.com/astronomer/astronomer-cosmos) , covering: Designing representative and extensible baseline tests. Setting up an isolated, distributed infrastructure for benchmarking. Running reproducible performance tests. Measuring DAG run times and task throughput. Evaluating CPU & memory consumption to optimize deployments. By the end of this session, you will have practical benchmarks and strategies for making informed decisions about evaluating the performance of DAGs in Airflow.