Ensuring high-quality data is essential for building user trust and enabling data teams to work efficiently. In this talk, we’ll explore how the Astronomer data team leverages Airflow to uphold data quality across complex pipelines; minimizing firefighting and maximizing confidence in reported metrics. Maintaining data quality requires a multi-faceted approach: safeguarding the integrity of source data, orchestrating pipelines reliably, writing robust code, and maintaining consistency in outputs. We’ve embedded data quality into the DevEx experience, so it’s always at the forefront instead of in the backlog of tech debt. We’ll share how we’ve operationalized: Implementing data contracts to define and enforce expectations Differentiating between critical (pipeline-blocking) and non-critical (soft) failures Exposing upstream data issues to domain owners Tracking metrics to measure overall data quality of our team Join us to learn practical strategies for building scalable, trustworthy data systems powered by Airflow.
talk-data.com
Speaker
Maggie Stark
2
talks
Filter by Event / Source
Talks & appearances
2 activities · Newest first
Astronomer’s data team recently underwent a major shift in how we work with Airflow. We’ll deep dive into the challenges which prompted that change, how we addressed them and where we are now. This re-architecture included: Switching to dataset scheduling and micro-pipelines to minimize failures and increase reliability. Implementing a Control DAG for complex dependency management and full end-to-end pipeline visibility. Standardized Task Groups for quick onboarding and scalability. With Airflow managing itself, we can once again focus on the data rather than the operational overhead. As proof we’ll share our favorite statistics from the terabyte of data we process daily revealing insights into how the world’s data teams use Airflow.