The MedTech industry is undergoing a revolutionary transformation with continuous innovations promising greater precision, efficiency, and accessibility. In particular oncology, a branch of medicine that focuses on cancer, will benefit immensely from these new technologies, which may enable clinicians to detect cancer earlier and increase chances of survival. Detecting cancerous cells in microscopic photography of cells (Whole Slide Images, aka WSIs) is usually done with segmentation algorithms, which neural networks (NNs) are very good at. While using ML and NNs for image segmentation is a fairly standard task with established solutions, doing it on WSIs is a different kettle of fish. Most training pipelines and systems have been designed for analytics, meaning huge columns of small individual datums. In the case of WSIs, a single image is so huge that its file can be up to dozens of gigabytes. To allow innovation in medical imaging with AI, we need efficient and affordable ways to store and process these WSIs at scale.
talk-data.com
G
Speaker
guillaume desforges
2
talks
Software Engineer
tamtam.ai
Filter by Event / Source
Talks & appearances
2 activities · Newest first
Il peut être difficile en React de choisir entre différentes implémentations donnant (en apparence) le même résultat. En miroitant les choix dans un langage fonctionnel pur, nous pouvons raisonner avec plus de structure sur la nature de ces choix. En prenant le cas typique de l'internationalisation (i18n), nous appliquons ce qui est a priori théorique à un cas très pratique.