talk-data.com talk-data.com

E

Speaker

Eric Peter

3

talks

Product - AI Platform Databricks

Filter by Event / Source

Talks & appearances

3 activities · Newest first

Search activities →
Measure What Matters: Quality-Focused Monitoring for Production AI Agents

Ensuring the operational excellence of AI agents in production requires robust monitoring capabilities that span both performance metrics and quality evaluation. This session explores Databricks' comprehensive Mosaic Agent Monitoring solution, designed to provide visibility into deployed AI agents through an intuitive dashboard that tracks critical operational metrics and quality indicators. We'll demonstrate how to use the Agent Monitoring solution to iteratively improve a production agent that delivers a better customer support experience while decreasing the cost of delivering customer support. We will show how to: Identify and proactively fix a quality problem with the GenAI agent’s response before it becomes a major issue. Understand user’s usage patterns and implement/test an feature improvement to the GenAI agent Key session takeaways include: Techniques for monitoring essential operational metrics, including request volume, latency, errors, and cost efficiency across your AI agent deployments Strategies for implementing continuous quality evaluation using AI judges that assess correctness, guideline adherence, and safety without requiring ground truth labels Best practices for setting up effective monitoring dashboards that enable dimension-based analysis across time periods, user feedback, and topic categories Methods for collecting and integrating end-user feedback to create a closed-loop system that drives iterative improvement of your AI agents

Navigating the Complexities of LLMs: Insights from Practitioners

Interested in diving deeper into the world of large language models (LLMs) and their real-life applications? In this session, we bring together our experienced team members and some of our esteemed customers to talk about their journey with LLMs. We'll delve into the complexities of getting these models to perform accurately and efficiently, the challenges, and the dynamic nature of LLM technology as it constantly evolves. This engaging conversation will offer you a broader perspective on how LLMs are being applied across different industries and how they’re revolutionizing our interaction with technology. Whether you're well-versed in AI or just beginning to explore, this session promises to enrich your understanding of the practical aspects of LLM implementation.

Talk by: Sai Ravuru, Eric Peter, Ankit Mathur, and Salman Mohammed

Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc

LLMOps: Everything You Need to Know to Manage LLMs

With the recent surge in popularity of ChatGPT and other LLMs such as Dolly, many people are going to start training, tuning, and deploying their own custom models to solve their domain-specific challenges. When training and tuning these models, there are certain considerations that need to be accounted for in the MLOps process that differ from traditional machine learning. Come watch this session where you’ll gain a better understanding of what to look out for when starting to enter the world of applying LLMs in your domain.

In this session, you’ll learn about:

  • Grabbing foundational models and fine-tuning them
  • Optimizing resource management such as GPUs
  • Integrating human feedback and reinforcement learning to improve model performance
  • Different evaluation methods for LLMs

Talk by: Joseph Bradley and Eric Peter

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc