talk-data.com talk-data.com

S

Speaker

Sebastian Schmidt

8

talks

PhD student, Data Analytics and Machine Learning group TU Munich; BMW Industrial PhD Program

PhD student at the Data Analytics and Machine Learning group at TU Munich and part of an Industrial PhD Program with the BMW research group. His work is mainly focused on Open-world active learning and perception for autonomous vehicles.

Bio from: Dec 11 - Visual AI for Physical AI Use Cases

Filter by Event / Source

Talks & appearances

8 activities · Newest first

Search activities →

Data is key for advances in machine learning, including mobile applications like robots and autonomous cars. To ensure reliable operation, occurring scenarios must be reflected by the underlying dataset. Since the open-world environments can contain unknown scenarios and novel objects, active learning from online data collection and handling of unknowns is required. In this talk we discuss different approach to address this real world requirements.

Data is key for advances in machine learning, including mobile applications like robots and autonomous cars. To ensure reliable operation, occurring scenarios must be reflected by the underlying dataset. Since the open-world environments can contain unknown scenarios and novel objects, active learning from online data collection and handling of unknowns is required. In this talk we discuss different approach to address this real world requirements.

Data is key for advances in machine learning, including mobile applications like robots and autonomous cars. To ensure reliable operation, occurring scenarios must be reflected by the underlying dataset. Since the open-world environments can contain unknown scenarios and novel objects, active learning from online data collection and handling of unknowns is required. In this talk we discuss different approach to address this real world requirements.

Data is key for advances in machine learning, including mobile applications like robots and autonomous cars. To ensure reliable operation, occurring scenarios must be reflected by the underlying dataset. Since the open-world environments can contain unknown scenarios and novel objects, active learning from online data collection and handling of unknowns is required. In this talk we discuss different approach to address this real world requirements.

Data is key for advances in machine learning, including mobile applications like robots and autonomous cars. To ensure reliable operation, occurring scenarios must be reflected by the underlying dataset. Since the open-world environments can contain unknown scenarios and novel objects, active learning from online data collection and handling of unknowns is required. In this talk we discuss different approach to address this real world requirements.

Data is key for advances in machine learning, including mobile applications like robots and autonomous cars. To ensure reliable operation, occurring scenarios must be reflected by the underlying dataset. Since the open-world environments can contain unknown scenarios and novel objects, active learning from online data collection and handling of unknowns is required. In this talk we discuss different approach to address this real world requirements.

Data is key for advances in machine learning, including mobile applications like robots and autonomous cars. To ensure reliable operation, occurring scenarios must be reflected by the underlying dataset. Since the open-world environments can contain unknown scenarios and novel objects, active learning from online data collection and handling of unknowns is required. In this talk we discuss different approach to address this real world requirements.