talk-data.com talk-data.com

Filter by Source

Select conferences and events

People (332 results)

See all 332 →

Companies (2 results)

Takima 1 speaker
VPE
Lead Analytics Engineer Senior Data/ Site Reliability Engineer

Activities & events

Title & Speakers Event

​LLMs are powerful, but they still hallucinate facts, especially when asked about entities, relationships, or claims that require up-to-date or structured knowledge.

​In this hands-on workshop, we'll explore how to use Wikidata as a grounding and fact-checking layer for LLMs to reduce hallucinations and make AI systems more reliable.

​We'll start with a short introduction to Wikidata and then set up the Wikidata MCP so an LLM can retrieve and verify facts rather than relying solely on its internal memory. This already provides a practical way to ground LLM outputs in verifiable data.

​From there, we’ll go beyond LLM-only approaches and build a small experimental fact-checking pipeline. The system combines semantic retrieval, LLM-based reranking, and natural language inference (NLI) to validate claims against evidence in a more controlled and interpretable way.

​This workshop focuses on evidence-driven verification pipelines that make LLM's reasoning steps explicit and easier to inspect, debug, and improve.

​What we'll cover:

  • ​Wikidata as a structured source for factual verification
  • ​Setting up and querying Wikidata using MCP
  • ​Verifying claims with MCP + an LLM
  • ​Moving beyond pure GenAI to evidence-based fact-checking
  • ​Finding relevant Wikidata statements with semantic search
  • ​Ranking candidate evidence with an LLM
  • ​Verifying claims using an NLI model

​​What you'll leave with By the end of the workshop, you'll be able to:

  • Ground LLM outputs in structured data to reduce hallucinations
  • ​Understand when LLM-only fact-checking is not enough
  • ​Build a small, transparent fact-checking pipeline you can adapt to real projects

About the speaker:

Philippe Saadé is the AI/ML project manager at Wikimedia Deutschland. His current work focuses on making Wikidata accessible to AI application with projects like the Wikidata vector database and the Wikidata Model Context Protocol.

Join our Slack: https://datatalks.club/slack.html

​This event is sponsored by Wikimedia

How to Reduce LLM Hallucinations with Wikidata: Hands-On Fact-Checking Using MCP

This two-part discussion series will explore how to make humanitarian spreadsheets more “AI-ready,” bringing together UN OCHA’s new guidance project with real-world lessons from recent AI spreadsheet extraction experiments.

UN OCHA is developing a short, practical guide to help humanitarian teams publish “AI-ready” public datasets that work better with tools like ChatGPT, Copilot, Gemini and open source models like Kimi K2 and GPT OSS running on providers like Groq when users simply upload a CSV or Excel file and start asking questions. The focus is on non-technical users who will not configure agents, write code, or reverse-engineer cryptic column names, but instead expect the AI to correctly interpret the file structure and labels out of the box. By recommending clear naming, consistent tabular layouts, and lightweight documentation, the guidance aims to reduce misinterpretation, hallucinations, and broken analyses when consumer AI tools encounter real-world humanitarian data.

Jan Zheng, a Developer Relations Engineer at Groq who helps people design and build AI prototypes, is exploring exactly these challenges from the model and tooling side. His recent experiments with spreadsheet extraction show that messy, multi-table spreadsheets routinely confuse even advanced models and agent frameworks, leading to unreliable extraction, off‑by‑one errors, looping agents, and high costs. These problems are amplified when complex datasets or vast amounts data are processed by non-technical users of commercial AI tools and open models. Lessons learned through research and usage can inform UN OCHA guidance by clarifying which spreadsheet patterns break current AI tools, which structures make extraction more robust, and how to balance “ideal” AI-ready formats with the messy realities of operational humanitarian spreadsheets.

Over two separate meetup discussions, staff from UN OCHA will introduce the AI‑ready data project in more detail, walk through the specific use case they are targeting, and answer questions from participants about scope, constraints, and potential applications in humanitarian settings. These sessions are designed to surface real-world experiences from practitioners who publish, manage, or use open humanitarian data, and to gather concrete examples of what works and what breaks when datasets are run through consumer AI tools and open source tools running through providers like Groq.

On a following date, Jan will join a dedicated session to react to the project, share his experimental findings on spreadsheet extraction, and discuss how infrastructure choices such as model selection, speed, and prompting strategies interact with the way humanitarian data is structured and published. His perspective will help bridge the gap between guidance aimed at data publishers and the realities of building and tuning AI systems that can reliably interpret messy, real-world spreadsheets used across the humanitarian sector.

Making Humanitarian Data AI‑Ready: Inside UN OCHA’s New Guidance Project

This two-part discussion series will explore how to make humanitarian spreadsheets more “AI-ready,” bringing together UN OCHA’s new guidance project with real-world lessons from recent AI spreadsheet extraction experiments.

UN OCHA is developing a short, practical guide to help humanitarian teams publish “AI-ready” public datasets that work better with tools like ChatGPT, Copilot, Gemini and open source models like Kimi K2 and GPT OSS running on providers like Groq when users simply upload a CSV or Excel file and start asking questions. The focus is on non-technical users who will not configure agents, write code, or reverse-engineer cryptic column names, but instead expect the AI to correctly interpret the file structure and labels out of the box. By recommending clear naming, consistent tabular layouts, and lightweight documentation, the guidance aims to reduce misinterpretation, hallucinations, and broken analyses when consumer AI tools encounter real-world humanitarian data.

Jan Zheng, a Developer Relations Engineer at Groq who helps people design and build AI prototypes, is exploring exactly these challenges from the model and tooling side. His recent experiments with spreadsheet extraction show that messy, multi-table spreadsheets routinely confuse even advanced models and agent frameworks, leading to unreliable extraction, off‑by‑one errors, looping agents, and high costs. These problems are amplified when complex datasets or vast amounts data are processed by non-technical users of commercial AI tools and open models. Lessons learned through research and usage can inform UN OCHA guidance by clarifying which spreadsheet patterns break current AI tools, which structures make extraction more robust, and how to balance “ideal” AI-ready formats with the messy realities of operational humanitarian spreadsheets.

Over two separate meetup discussions, staff from UN OCHA will introduce the AI‑ready data project in more detail, walk through the specific use case they are targeting, and answer questions from participants about scope, constraints, and potential applications in humanitarian settings. These sessions are designed to surface real-world experiences from practitioners who publish, manage, or use open humanitarian data, and to gather concrete examples of what works and what breaks when datasets are run through consumer AI tools and open source tools running through providers like Groq.

On a following date, Jan will join a dedicated session to react to the project, share his experimental findings on spreadsheet extraction, and discuss how infrastructure choices such as model selection, speed, and prompting strategies interact with the way humanitarian data is structured and published. His perspective will help bridge the gap between guidance aimed at data publishers and the realities of building and tuning AI systems that can reliably interpret messy, real-world spreadsheets used across the humanitarian sector.

Making Humanitarian Data AI‑Ready: Inside UN OCHA’s New Guidance Project

This two-part discussion series will explore how to make humanitarian spreadsheets more “AI-ready,” bringing together UN OCHA’s new guidance project with real-world lessons from recent AI spreadsheet extraction experiments.

UN OCHA is developing a short, practical guide to help humanitarian teams publish “AI-ready” public datasets that work better with tools like ChatGPT, Copilot, Gemini and open source models like Kimi K2 and GPT OSS running on providers like Groq when users simply upload a CSV or Excel file and start asking questions. The focus is on non-technical users who will not configure agents, write code, or reverse-engineer cryptic column names, but instead expect the AI to correctly interpret the file structure and labels out of the box. By recommending clear naming, consistent tabular layouts, and lightweight documentation, the guidance aims to reduce misinterpretation, hallucinations, and broken analyses when consumer AI tools encounter real-world humanitarian data.

Jan Zheng, a Developer Relations Engineer at Groq who helps people design and build AI prototypes, is exploring exactly these challenges from the model and tooling side. His recent experiments with spreadsheet extraction show that messy, multi-table spreadsheets routinely confuse even advanced models and agent frameworks, leading to unreliable extraction, off‑by‑one errors, looping agents, and high costs. These problems are amplified when complex datasets or vast amounts data are processed by non-technical users of commercial AI tools and open models. Lessons learned through research and usage can inform UN OCHA guidance by clarifying which spreadsheet patterns break current AI tools, which structures make extraction more robust, and how to balance “ideal” AI-ready formats with the messy realities of operational humanitarian spreadsheets.

Over two separate meetup discussions, staff from UN OCHA will introduce the AI‑ready data project in more detail, walk through the specific use case they are targeting, and answer questions from participants about scope, constraints, and potential applications in humanitarian settings. These sessions are designed to surface real-world experiences from practitioners who publish, manage, or use open humanitarian data, and to gather concrete examples of what works and what breaks when datasets are run through consumer AI tools and open source tools running through providers like Groq.

On a following date, Jan will join a dedicated session to react to the project, share his experimental findings on spreadsheet extraction, and discuss how infrastructure choices such as model selection, speed, and prompting strategies interact with the way humanitarian data is structured and published. His perspective will help bridge the gap between guidance aimed at data publishers and the realities of building and tuning AI systems that can reliably interpret messy, real-world spreadsheets used across the humanitarian sector.

Making Humanitarian Data AI‑Ready: Inside UN OCHA’s New Guidance Project

This two-part discussion series will explore how to make humanitarian spreadsheets more “AI-ready,” bringing together UN OCHA’s new guidance project with real-world lessons from recent AI spreadsheet extraction experiments.

UN OCHA is developing a short, practical guide to help humanitarian teams publish “AI-ready” public datasets that work better with tools like ChatGPT, Copilot, Gemini and open source models like Kimi K2 and GPT OSS running on providers like Groq when users simply upload a CSV or Excel file and start asking questions. The focus is on non-technical users who will not configure agents, write code, or reverse-engineer cryptic column names, but instead expect the AI to correctly interpret the file structure and labels out of the box. By recommending clear naming, consistent tabular layouts, and lightweight documentation, the guidance aims to reduce misinterpretation, hallucinations, and broken analyses when consumer AI tools encounter real-world humanitarian data.

Jan Zheng, a Developer Relations Engineer at Groq who helps people design and build AI prototypes, is exploring exactly these challenges from the model and tooling side. His recent experiments with spreadsheet extraction show that messy, multi-table spreadsheets routinely confuse even advanced models and agent frameworks, leading to unreliable extraction, off‑by‑one errors, looping agents, and high costs. These problems are amplified when complex datasets or vast amounts data are processed by non-technical users of commercial AI tools and open models. Lessons learned through research and usage can inform UN OCHA guidance by clarifying which spreadsheet patterns break current AI tools, which structures make extraction more robust, and how to balance “ideal” AI-ready formats with the messy realities of operational humanitarian spreadsheets.

Over two separate meetup discussions, staff from UN OCHA will introduce the AI‑ready data project in more detail, walk through the specific use case they are targeting, and answer questions from participants about scope, constraints, and potential applications in humanitarian settings. These sessions are designed to surface real-world experiences from practitioners who publish, manage, or use open humanitarian data, and to gather concrete examples of what works and what breaks when datasets are run through consumer AI tools and open source tools running through providers like Groq.

On a following date, Jan will join a dedicated session to react to the project, share his experimental findings on spreadsheet extraction, and discuss how infrastructure choices such as model selection, speed, and prompting strategies interact with the way humanitarian data is structured and published. His perspective will help bridge the gap between guidance aimed at data publishers and the realities of building and tuning AI systems that can reliably interpret messy, real-world spreadsheets used across the humanitarian sector.

Making Humanitarian Data AI‑Ready: Inside UN OCHA’s New Guidance Project

En este episodio te contamos con cuáles consejos financieros NO estamos de acuerdo… y por qué. 💛💸

Aquí hablamos de por qué anotar cada gasto puede volverse agotador, por qué un fondo de emergencia de “US$1,000 para todo el mundo” no tiene sentido, y muchos más👀 Dale ME GUSTA 👍 a este video y COMENTA 💬 ¿Cuál de estos consejos sientes que ya no aplica para ti?

🔔 Suscríbete al canal y compártelo con tus amigas, tu pareja o tu familia… para que todos entren al 2025 con las finanzas en orden. 💛

Economics Data Podcast
Event Takimeet #8 2025-11-26
julien dubois – Head of Java team, Developer Relations @ Microsoft

A propos du talk : Les agents IA sont des programmes qui agissent de manière autonome : pour cela, ils doivent être capables de communiquer de manière programmatique avec une IA, et d'effectuer des actions.Dans cette session, allons voir:Les Structured Outputs : comment obliger une IA à répondre en suivant un schéma JSON, de manière à pouvoir mapper ce résultat avec des objet JavaLe Function Calling : comment définir et appeler des functions Java depuis un modèle IAMCP: le nouveau protocole qui standardise comment les LLM communiquent avec différentes sources de données et outilsNous utiliserons le code, les démos et la documentation que j'ai réalisés pour implémenter ces fonctionnalités dans LangChain4j en utilisant le tout nouveau SDK Java développé par OpenAI.

structured outputs function calling mcp langchain4j java sdk openai
nicolas favier – VPE @ Takima

Si la plupart des applications développées en Spring possèdent des tests d’intégration, ces derniers sont les bêtes noires des outils de CI. Combien d’équipes n’ont jamais pris le temps de chérir leur base de tests et ont succombé au chaos d’une architecture de test désorganisée ? Dans ce talk, Mathilde et Nicolas souhaitent partager avec vous les bons réflexes pour se lancer dans un vrai ménage de printemps. L’objectif ? Vous aider à reprendre le contrôle de vos tests d’intégration à travers un live coding de refacto. Leur pari ? Que vous repartiez avec une envie insatiable d’aller dépoussiérer vos tests, et de les soigner définitivement.

spring tests du2019intu00e9gration ci/cd live coding refactor
Event Economics Data Podcast 2025-11-26

¿Ya tienes gastado el doble … antes de que llegue? 😅💸

Diciembre llega con juntaderas, regalos, cenas, decoración y mucha “bonanza”… pero también con enero eterno si no planificas. En este episodio hablamos SIN FILTROS de cómo usar tu doble con intención, sin dejar de disfrutar la Navidad. 🎄✨

Dale ME GUSTA 👍 a este video y COMENTA  💬¿Qué harás este diciembre con tu dinero? 👀

🔔Suscríbete al canal, comparte este episodio con tu grupo de amigas, tu pareja o tu familia antes de que se acabe el 2025

Rosanna Ruiz – Presidenta @ Asociación de Bancos Múltiples (ABA)

¿Y si la inversión más rentable de tu vida… no estuviera en un banco, ni en un fondo, ni en la bolsa? 💡¿Nos creerías?

En este episodio hablamos con Rosanna Ruiz (Presidenta de la Asociación de Bancos Múltiples (ABA) sí, la #MamáDeLaura sobre algo que te cambia la vida (y el bolsillo): 💡 invertir en TI. Si quieres crecer en tu carrera, ganar más, emprender o simplemente ser tu mejor versión… este episodio es para ti.

Además, compartimos un código especial exclusivo para nuestra comunidad: EDUCACION.ECONOMICS

Dale ME GUSTA 👍 a este video y COMENTA  💬 ¿en qué estás pensando invertir en este último mes del año?

🔔 Suscríbete y activa la campana para más episodios que te ayudan a crecer

Sarah Young – Security person @ Microsoft , Seth Juarez – Product Manager @ Microsoft , Akosua Boadi-Agyemang – Sr. Integrated Marketing Manager @ Microsoft

“On Air at Microsoft Ignite” will deep dive into key announcements with expert interviews, demonstrations, and real-world applications for all the latest news. ​​

Hour 2 will feature:​ Azure Infrastructure: Jeremy Winter ​ AI Skills Navigator: Kavitha Radhakrishnan​ Varonis: Shawn Hays​ NVIDIA: Andrew Hester​ GitHub Copilot: Martin Woodward​ AMD: Arjun Oberoi & Daniel Kim

AI/ML Azure GitHub Microsoft
Microsoft Ignite 2025

Artisans. Let's meet again, in-person event at a new wonderful event location (Wikimedia Deutschland).

## Talks

  • Please suggest talks!
Laravel User Group Berlin #28
Kim Smets – VP Data & AI @ Telenet , Ben – guest

Send us a text In this episode of Data Topics, Ben speaks with Kim Smets, VP Data & AI at Telenet, about his journey from early machine learning work to leading enterprise-wide AI transformation at Telenet. Kim shares how he built a central data & AI team, shifted from fragmented reporting to product thinking, and embedded governance that actually works. They discuss the importance of simplicity, storytelling, and sustainable practices in making AI easy, relevant, and famous across the business. From GenAI exploration to real-world deployment, this episode is packed with practical insights on scaling AI with purpose.

AI/ML GenAI
DataTopics: All Things Data, AI & Tech

A talk about managing anxiety, burnout, and career decisions in tech. Kim Scott discusses emotional agility, thought models, and coaching that helped her align with her values, stay calm, and make bold career moves. The session includes a personal journey through data science and related roles, with practical tools to stay focused and authentic.

Data Science
Ditch the Anxiety, Make Bold Moves, and Design Your Meaningful Tech Career
Event Economics Data Podcast 2025-11-12
Jorge Rodríguez – Vicepresidente Ejecutivo @ CCI Puesto de Bolsa

Episodio avanzado📊

Conversamos con Jorge Rodríguez, Vicepresidente Ejecutivo de CCI Puesto de Bolsa, sobre cómo nació CCI Puesto de Bolsa en 2010 , cuando casi nadie hablaba de inversiones, y cómo hoy se ha convertido en una firma innovadora y de alto impacto en las inversiones en República Dominicana. 🇩🇴 

Dale ME GUSTA 👍 a este video y COMENTA  💬si  ¿Ya estás invirtiendo o estás por empezar?   👉 Suscríbete y activa la campana para no perderte los próximos episodios 🔔

Síguenos en: https://www.instagram.com/economicsdata/ https://www.facebook.com/economicsdata https://www.youtube.com/@economicsdata257 Spotify / https://open.spotify.com/show/0O5jVCRwmCTAyWC2rGF4Fq?si=a4f4644e93384d6a

Esto puede ser el recordatorio que necesitabas para decirle “no” a gastos por presión (y “sí” a lo que quieres TU y a tus metas)

En este episodio descubrirás cómo la presión social puede vaciar tu bolsillo sin que te des cuenta😅 Desde quien no repite ropa por miedo al qué dirán 👗 hasta parejas que se endeudan solo para verse “cool” en redes ✈️📱 todas esas pequeñas decisiones que parecen inofensivas, pero te alejan de tus metas.

💛 Te compartimos consejos prácticos que puedes aplicar hoy mismo para disfrutar sin culpa y cuidar tu dinero.

Dale ME GUSTA a este video y COMENTA 

👉 Suscríbete y activa la campanita 🔔

Síguenos en: https://www.instagram.com/economicsdata/ https://www.facebook.com/economicsdata https://www.youtube.com/@economicsdata257 Spotify / https://open.spotify.com/show/0O5jVCRwmCTAyWC2rGF4Fq?si=a4f4644e93384d6a

¿Te atreverías a renunciar a tu trabajo para dedicarte a tu emprendimiento? Si tienes la duda o simplemente quieres el chisme completo de nuestra renuncia, este episodio es para ti.

Después de más de 10 años corriendo entre el trabajo, el crecimiento de nuestra familia, las miles de grabaciones, campañas con marcas, los talleres, las asesorías, el podcast semanal, la creación de la Feria Finanzas con Cucharitas y mucho más… 💛

Tomamos una de las decisiones más grandes de nuestras vidas: renunciar a nuestros trabajos de 9 a 5.

En este episodio te contamos nuestras conversaciones, miedos, dudas y anécdotas, pero sobre todo, lo que significó atrevernos a apostar por nuestra empresa de educación financiera.

Dale ME GUSTA a este video y COMENTA si ¿alguna vez una decisión te generó mucho miedo?

👉 Suscríbete y activa la campanita 🔔

Síguenos en: https://www.instagram.com/economicsdata/ https://www.facebook.com/economicsdata https://www.youtube.com/@economicsdata257 Spotify / https://open.spotify.com/show/0O5jVCRwmCTAyWC2rGF4Fq?si=a4f4644e93384d6a

¿Le tienes miedo a las deudas? En este episodio te contamos cómo superamos ese miedo y los errores que cometimos y lecciones que aprendimos de ellas. Desde préstamos personales hasta hipotecarios, la diferencia una deuda buena de una mala y lo que tienes que tomar en cuenta al sacar una deuda🙌🏼 🎧 Dale play, comenta tu experiencia y comparte este episodio con alguien que aún le tiene miedo a las deudas. 💬 👉 Suscríbete y activa la campanita 🔔

Síguenos en:

https://www.instagram.com/economicsdata/ https://www.facebook.com/economicsdata https://www.youtube.com/@economicsdata257 Spotify / https://open.spotify.com/show/0O5jVCRwmCTAyWC2rGF4Fq?si=a4f4644e93384d6a

Laura Méndez – founder @ The Legal Corner RD

Si estás en una relación seria o comprometido 💑 este episodio puede literalmente cambiar tu vida.   Aquí hablamos sin filtro 🧠 sobre uno de los temas más ignorados (y más urgentes) en las relaciones: la planificación financiera en pareja. 💸📊

Junto a Laura Méndez, abogada experta en derecho de familia ⚖️ y negocios 🧾, tocamos todo lo que nadie te explica antes de casarte: regímenes matrimoniales 📝, protección de bienes 🏠, deudas compartidas 💳, errores que terminan en pérdidas dolorosas… y muchísimo más que necesitas saber si quieres proteger lo que estás construyendo 🚧

Dale play ▶️ y prepárate para tener esa conversación que tenías pendiente.

👉 Suscríbete y activa la campana 🔔

Síguenos en: https://www.instagram.com/economicsdata/ https://www.facebook.com/economicsdata https://www.youtube.com/@economicsdata257 Spotify / https://open.spotify.com/show/0O5jVCRwmCTAyWC2rGF4Fq?si=a4f4644e93384d6a

Gina Joga – guest

Hay gente que sabe algo que tú no sabes… Y Gina Joga, nuestra invitada y amiga, es una de ellas. ✨✨ Por eso siempre ando llamandola y siempre recibo buenos trucos de ella… Trucos que te revelamos aquí.

Descubre los hacks financieros cotidianos que te harán decir: ¿cómo no sabía esto antes?” 😱 💡 Desde cashback, millas y descuentos secretos, comparación para ganar más, hasta cómo vender lo que ya tienes con poco esfuerzo, pero mucha creatividad…  👉 Suscríbete y activa la campana 🔔

Dale play, suscríbete 🔔 y comenta si aprendiste algo nuevo 💬 Síguenos en: https://www.instagram.com/economicsdata/ https://www.facebook.com/economicsdata https://www.youtube.com/@economicsdata257 Spotify / https://open.spotify.com/show/0O5jVCRwmCTAyWC2rGF4Fq?si=a4f4644e93384d6a