Airflow is often used for running data pipelines, which themselves connect with other services through the provider system. However, it is also increasingly used as an engine under-the-hood for other projects building on top of the DAG primitive. For example, Cosmos is a framework for automatically transforming dbt DAGs into Airflow DAGs, so that users can supplement the developer experience of dbt with the power of Airflow. This session dives into how a select group of these frameworks (Cosmos, Meltano, Chronon) use Airflow as an engine for orchestrating complex workflows their systems depend on. In particular, we will discuss ways that we’ve increased Airflow performance to meet application-specific demands (high-task-count Cosmos DAGs, streaming jobs in Chronon), new Airflow features that will evolve how these frameworks use Airflow under the hood (DAG versioning, dataset integrations), and paths we see these projects taking over the next few years as Airflow grows. Airflow is not just a DAG platform, it’s an application platform!
talk-data.com
Topic
Cosmos
Azure Cosmos DB
3
tagged
Activity Trend
Top Events
Balyasny Asset Management (BAM) is a diversified global investment firm founded in 2001 with over $20 billion in assets under management. As dbt took hold at BAM, we had multiple teams building dbt projects against Snowflake, Redshift, and SQL Server. The common question was: How can we quickly and easily productionise our projects? Airflow is the orchestrator of choice at BAM, but our dbt users ranged from Airflow power users to people who’d never heard of Airflow before. We built a single solution on top of Cosmos that allowed us to: Decouple the dbt project from the Airflow repository Have each dbt node run as a separate Airflow task Allow users to run dbt with little to no Airflow knowledge Enable users to have fine-grained control over how dbt is run and to combine it with other Airflow tasks Provide observability, monitoring, and alerting.
The integration between dbt and Airflow is a popular topic in the community, both in previous editions of Airflow Summit, in Coalesce and the #airflow-dbt Slack channel. Astronomer Cosmos ( https://github.com/astronomer/astronomer-cosmos/ ) stands out as one of the libraries that strives to enhance this integration, having over 300k downloads per month. During its development, we’ve encountered various performance challenges in terms of scheduling and task execution. While we’ve managed to address some, others remain to be resolved. This talk describes how Cosmos works, the improvements made over the last 1.5 years, and the roadmap. It also aims to collect feedback from the community on how we can further improve the experience of running dbt in Airflow.