talk-data.com
Data Architecture Evolution – The Impact on Analytical Data Platforms
Description
We're in the a Cambrian Explosion of data architectures. In the last two years, dozens of vendors have each championed their own version of ‘the modern data architecture solution’, all claiming to be the future of IT in a data-driven enterprise. The sheer volume of architectures is daunting: Streaming data platforms, data lakes, structured/semi-structured/unstructured data, cloud data warehouses supporting external tables and federated query processing, lakehouses, data fabric, and layers of federated query platforms that offer virtual views of data. All claim to support the building of data products.
No surprise that customers are confused as to which option to choose.
However, key changes have emerged including much broader support for open table formats such as Apache Iceberg, Apache Hudi and Delta Lake in many other vendor data platforms. In addition, we have seen significant new milestones in extending the ISO SQL Standard to support new kinds of analytics in general purpose SQL. Also, AI has also advanced to work across any type of data.
What does this all mean for data management? What is the impact of this on analytical data platforms and what does it mean for customers? What opportunities does this evolution open up for tools vendors whose data foundation is reliant on other vendor database management systems and data platforms? This session looks at this evolution, helping vendors and IT professionals alike realise the potential of what’s now possible and how they can exploit it for competitive advantage.