talk-data.com talk-data.com

Event

Data Skeptic

2014-05-23 – 2025-11-23 Podcasts Visit website ↗

Activities tracked

394

The Data Skeptic Podcast features interviews and discussion of topics related to data science, statistics, machine learning, artificial intelligence and the like, all from the perspective of applying critical thinking and the scientific method to evaluate the veracity of claims and efficacy of approaches.

Sessions & talks

Showing 276–300 of 394 · Newest first

Search within this event →

Machine Learning on Images with Noisy Human-centric Labels

2016-08-05 Listen
podcast_episode

When humans describe images, they have a reporting bias, in that the report only what they consider important. Thus, in addition to considering whether something is present in an image, one should consider whether it is also relevant to the image before labeling it. Ishan Misra joins us this week to discuss his recent paper Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels which explores a novel architecture for learning to distinguish presence and relevance. This work enables web-scale datasets to be useful for training, not just well groomed hand labeled corpora.

[MINI] Survival Analysis

2016-07-29 Listen
podcast_episode

Survival analysis techniques are useful for studying the longevity of groups of elements or individuals, taking into account time considerations and right censorship. This episode explores how survival analysis can describe marriages, in particular, using the non-parametric Cox proportional hazard model. This episode discusses some good summaries of survey data on marriage and divorce which can be found here. The python lifelines library is a good place to get started for people that want to do some hands on work.

Predictive Models on Random Data

2016-07-22 Listen
podcast_episode

This week is an insightful discussion with Claudia Perlich about some situations in machine learning where models can be built, perhaps by well-intentioned practitioners, to appear to be highly predictive despite being trained on random data. Our discussion covers some novel observations about ROC and AUC, as well as an informative discussion of leakage. Much of our discussion is inspired by two excellent papers Claudia authored: Leakage in Data Mining: Formulation, Detection, and Avoidance and On Cross Validation and Stacking: Building Seemingly Predictive Models on Random Data. Both are highly recommended reading!

[MINI] Receiver Operating Characteristic (ROC) Curve

2016-07-15 Listen
podcast_episode

An ROC curve is a plot that compares the trade off of true positives and false positives of a binary classifier under different thresholds. The area under the curve (AUC) is useful in determining how discriminating a model is. Together, ROC and AUC are very useful diagnostics for understanding the power of one's model and how to tune it.

Multiple Comparisons and Conversion Optimization

2016-07-08 Listen
podcast_episode

I'm joined by Chris Stucchio this week to discuss how deliberate or uninformed statistical practitioners can derive spurious and arbitrary results via multiple comparisons. We discuss p-hacking and a variety of other important lessons and tips for proper analysis. You can enjoy Chris's writing on his blog at chrisstucchio.com and you may also like his recent talk Multiple Comparisons: Make Your Boss Happy with False Positives, Guarenteed.

[MINI] Leakage

2016-07-01 Listen
podcast_episode

If you'd like to make a good prediction, your best bet is to invent a time machine, visit the future, observe the value, and return to the past. For those without access to time travel technology, we need to avoid including information about the future in our training data when building machine learning models. Similarly, if any other feature whose value would not actually be available in practice at the time you'd want to use the model to make a prediction, is a feature that can introduce leakage to your model.

Predictive Policing

2016-06-24 Listen
podcast_episode
Kyle Polich , Kristian Lum (HRDAG (Human Rights Data Analysis Group))

Kristian Lum (@KLdivergence) joins me this week to discuss her work at @hrdag on predictive policing. We also discuss Multiple Systems Estimation, a technique for inferring statistical information about a population from separate sources of observation. If you enjoy this discussion, check out the panel Tyranny of the Algorithm? Predictive Analytics & Human Rights which was mentioned in the episode.

[MINI] The CAP Theorem

2016-06-17 Listen
podcast_episode

Distributed computing cannot guarantee consistency, accuracy, and partition tolerance. Most system architects need to think carefully about how they should appropriately balance the needs of their application across these competing objectives. Linh Da and Kyle discuss the CAP Theorem using the analogy of a phone tree for alerting people about a school snow day.

Detecting Terrorists with Facial Recognition?

2016-06-10 Listen
podcast_episode

A startup is claiming that they can detect terrorists purely through facial recognition. In this solo episode, Kyle explores the plausibility of these claims.

[MINI] Goodhart's Law

2016-06-03 Listen
podcast_episode

Goodhart's law states that "When a measure becomes a target, it ceases to be a good measure". In this mini-episode we discuss how this affects SEO, call centers, and Scrum.

Data Science at eHarmony

2016-05-27 Listen
podcast_episode
Kyle Polich , Jon Morra (eHarmony)

I'm joined this week by Jon Morra, director of data science at eHarmony to discuss a variety of ways in which machine learning and data science are being applied to help connect people for successful long term relationships. Interesting open source projects mentioned in the interview include Face-parts, a web service for detecting faces and extracting a robust set of fiducial markers (features) from the image, and Aloha, a Scala based machine learning library. You can learn more about these and other interesting projects at the eHarmony github page. In the wrap up, Jon mentioned the LA Machine Learning meetup which he runs. This is a great resource for LA residents separate and complementary to datascience.la groups, so consider signing up for all of the above and I hope to see you there in the future.

[MINI] Stationarity and Differencing

2016-05-20 Listen
podcast_episode

Mystery shoppers and fruit cultivation help us discuss stationarity - a property of some time serieses that are invariant to time in several ways. Differencing is one approach that can often convert a non-stationary process into a stationary one. If you have a stationary process, you get the benefits of many known statistical properties that can enable you to do a significant amount of inferencing and prediction.

Feather

2016-05-13 Listen
podcast_episode

I'm joined by Wes McKinney (@wesmckinn) and Hadley Wickham (@hadleywickham) on this episode to discuss their joint project Feather. Feather is a file format for storing data frames along with some metadata, to help with interoperability between languages. At the time of recording, libraries are available for R and Python, making it easy for data scientists working in these languages to quickly and effectively share datasets and collaborate.

[MINI] Bargaining

2016-05-06 Listen
podcast_episode

Bargaining is the process of two (or more) parties attempting to agree on the price for a transaction.  Game theoretic approaches attempt to find two strategies from which neither party is motivated to deviate.  These strategies are said to be in equilibrium with one another.  The equilibriums available in bargaining depend on the the transaction mechanism and the information of the parties.  Discounting (how long parties are willing to wait) has a significant effect in this process.  This episode discusses some of the choices Kyle and Linh Da made in deciding what offer to make on a house.

deepjazz

2016-04-29 Listen
podcast_episode
Kyle Polich , Ji-Sung Kim (Princeton University)

Deepjazz is a project from Ji-Sung Kim, a computer science student at Princeton University. It is built using Theano, Keras, music21, and Evan Chow's project jazzml. Deepjazz is a computational music project that creates original jazz compositions using recurrent neural networks trained on Pat Metheny's "And Then I Knew". You can hear some of deepjazz's original compositions on soundcloud.

[MINI] Auto-correlative functions and correlograms

2016-04-22 Listen
podcast_episode

When working with time series data, there are a number of important diagnostics one should consider to help understand more about the data. The auto-correlative function, plotted as a correlogram, helps explain how a given observations relates to recent preceding observations. A very random process (like lottery numbers) would show very low values, while temperature (our topic in this episode) does correlate highly with recent days.

See the show notes with details about Chapel Hill, NC weather data by visiting:   https://dataskeptic.com/blog/episodes/2016/acf-correlograms  

Early Identification of Violent Criminal Gang Members

2016-04-15 Listen
podcast_episode
Paulo Shakarian (CySIS Lab) , Kyle Polich , Elham Shaabani (CySIS Lab)

This week I spoke with Elham Shaabani and Paulo Shakarian (@PauloShakASU) about their recent paper Early Identification of Violent Criminal Gang Members (also available onarXiv). In this paper, they use social network analysis techniques and machine learning to provide early detection of known criminal offenders who are in a high risk group for committing violent crimes in the future. Their techniques outperform existing techniques used by the police. Elham and Paulo are part of the Cyber-Socio Intelligent Systems (CySIS) Lab.

[MINI] Fractional Factorial Design

2016-04-08 Listen
podcast_episode

A dinner party at Data Skeptic HQ helps teach the uses of fractional factorial design for studying 2-way interactions.

Machine Learning Done Wrong

2016-04-01 Listen
podcast_episode
Cheng-tao Chu (OneInterview.io) , Kyle Polich

Cheng-tao Chu (@chengtao_chu) joins us this week to discuss his perspective on common mistakes and pitfalls that are made when doing machine learning. This episode is filled with sage advice for beginners and intermediate users of machine learning, and possibly some good reminders for experts as well. Our discussion parallels his recent blog postMachine Learning Done Wrong. Cheng-tao Chu is an entrepreneur who has worked at many well known silicon valley companies. His paper Map-Reduce for Machine Learning on Multicore is the basis for Apache Mahout. His most recent endeavor has just emerged from steath, so please check out OneInterview.io.

Potholes

2016-03-25 Listen
podcast_episode
Linh Da , Ben Berkowitz (SeeClickFix) , Kyle Polich , Chelsea Ursaner (LA City Open Data Team) , Russ Klettke (pothole.info)

Co-host Linh Da was in a biking accident after hitting a pothole. She sustained an injury that required stitches. This is the story of our quest to file a 311 complaint and track it through the City of Los Angeles's open data portal. My guests this episode are Chelsea Ursaner (LA City Open Data Team), Ben Berkowitz (CEO and founder of SeeClickFix), and Russ Klettke (Editor of pothole.info)

[MINI] The Elbow Method

2016-03-18 Listen
podcast_episode

Certain data mining algorithms (including k-means clustering and k-nearest neighbors) require a user defined parameter k. A user of these algorithms is required to select this value, which raises the questions: what is the "best" value of k that one should select to solve their problem? This mini-episode explores the appropriate value of k to use when trying to estimate the cost of a house in Los Angeles based on the closests sales in it's area.

Too Good to be True

2016-03-11 Listen
podcast_episode

Today on Data Skeptic, Lachlan Gunn joins us to discuss his recent paper Too Good to be True. This paper highlights a somewhat paradoxical / counterintuitive fact about how unanimity is unexpected in cases where perfect measurements cannot be taken. With large enough data, some amount of error is expected. The "Too Good to be True" paper highlights three interesting examples which we discuss in the podcast. You can also watch a lecture from Lachlan on this topic via youtube here.

[MINI] R-squared

2016-03-04 Listen
podcast_episode

How well does your model explain your data? R-squared is a useful statistic for answering this question. In this episode we explore how it applies to the problem of valuing a house. Aspects like the number of bedrooms go a long way in explaining why different houses have different prices. There's some amount of variance that can be explained by a model, and some amount that cannot be directly measured. R-squared is the ratio of the explained variance to the total variance. It's not a measure of accuracy, it's a measure of the power of one's model.

Models of Mental Simulation

2016-02-26 Listen
podcast_episode

Jessica Hamrick joins us this week to discuss her work studying mental simulation. Her research combines machine learning approaches iwth behavioral method from cognitive science to help explain how people reason and predict outcomes. Her recent paper Think again? The amount of mental simulation tracks uncertainty in the outcome is the focus of our conversation in this episode. Lastly, Kyle invited Samuel Hansen from the Relative Prime podcast to mention the Relatively Prime Season 3 kickstarter, which needs your support now through Friday, March 11th, 2016.

[MINI] Multiple Regression

2016-02-19 Listen
podcast_episode
CSV

This episode is a discussion of multiple regression: the use of observations that are a vector of values to predict a response variable. For this episode, we consider how features of a home such as the number of bedrooms, number of bathrooms, and square footage can predict the sale price. Unlike a typical episode of Data Skeptic, these show notes are not just supporting material, but are actually featured in the episode.

The site Redfin gratiously allows users to download a CSV of results they are viewing. Unfortunately, they limit this extract to 500 listings, but you can still use it to try the same approach on your own using the download link shown in the figure below.