talk-data.com talk-data.com

A

Speaker

Alex Liu

1

talks

author

Filter by Event / Source

Talks & appearances

1 activities · Newest first

Search activities →
Apache Spark Machine Learning Blueprints

In 'Apache Spark Machine Learning Blueprints', you'll explore how to create sophisticated and scalable machine learning projects using Apache Spark. This project-driven guide covers practical applications including fraud detection, customer analysis, and recommendation engines, helping you leverage Spark's capabilities for advanced data science tasks. What this Book will help me do Learn to set up Apache Spark efficiently for machine learning projects, unlocking its powerful processing capabilities. Integrate Apache Spark with R for detailed analytical insights, empowering your decision-making processes. Create predictive models for use cases including customer scoring, fraud detection, and risk assessment with practical implementations. Understand and utilize Spark's parallel computing architecture for large-scale machine learning tasks. Develop and refine recommendation systems capable of handling large user bases and datasets using Spark. Author(s) Alex Liu is a seasoned data scientist and software developer specializing in machine learning and big data technology. With extensive experience in using Apache Spark for predictive analytics, Alex has successfully built and deployed scalable solutions across industries. Their teaching approach combines theory and practical insights, making cutting-edge technologies accessible and actionable. Who is it for? This book is ideal for data analysts, data scientists, and developers with a foundation in machine learning who are eager to apply their knowledge in big data contexts. If you have a basic familiarity with Apache Spark and its ecosystem, and you're looking to enhance your ability to build machine learning applications, this resource is for you. It's particularly valuable for those aiming to utilize Spark for extensive data operations and gain practical, project-based insights.