talk-data.com talk-data.com

C

Speaker

Corey Zumar

2

talks

Staff Software Engineer Databricks

Corey has been working as a Software Engineer at Databricks for the last 4 years and has been an active contributor to and maintainer of MLflow since its first release.

Bio from: Data + AI Summit 2025

Filter by Event / Source

Talks & appearances

2 activities · Newest first

Search activities →
MLflow 3.0: AI and MLOps on Databricks

Ready to streamline your ML lifecycle? Join us to explore MLflow 3.0 on Databricks, where we'll show you how to manage everything from experimentation to production with less effort and better results. See how this powerful platform provides comprehensive tracking, evaluation, and deployment capabilities for traditional ML models and cutting-edge generative AI applications. Key takeaways: Track experiments automatically to compare model performance Monitor models throughout their lifecycle across environments Manage deployments with robust versioning and governance Implement proven MLOps workflows across development stages Build and deploy generative AI applications at scale Whether you're an MLOps novice or veteran, you'll walk away with practical techniques to accelerate your ML development and deployment.

Advancements in Open Source LLM Tooling, Including MLflow

MLflow is one of the most used open source machine learning frameworks with over 13 million monthly downloads. With the recent advancements in generative AI, MLflow has been rapidly integrating support for a lot of the popular AI tools being used such as Hugging Face, LangChain, and OpenAI. This means that it’s becoming easier than ever to build AI pipelines with your data as the foundation, yet expanding your capabilities with the incredible advancements of the AI community.

Come to this session to learn how MLflow can help you:

  • Easily grab open source models from Hugging Face and use Transformers pipelines in MLflow
  • Integrate LangChain for more advanced services and to add context into your model pipelines
  • Bring in OpenAI APIs as part of your pipelines
  • Quickly track and deploy models on the lakehouse using MLflow

Talk by: Corey Zumar and Ben Wilson

Connect with us: Website: https://databricks.com Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc Facebook: https://www.facebook.com/databricksinc