talk-data.com talk-data.com

J

Speaker

Jaynal Abedin

2

talks

author

Filter by Event / Source

Talks & appearances

2 activities · Newest first

Search activities →
Modern R Programming Cookbook

'Modern R Programming Cookbook' provides an array of practical recipes designed to enhance your R programming skills for statistical, data science, and graphical applications. With this book, you will deepen your understanding of R's syntax and semantics and be able to solve real-world problems using R effectively. What this Book will help me do Understand and configure R's development environment, including IDE setup and library management. Master R's core data structures and best practices for efficient data manipulation. Design and implement custom R functions, handling errors and utilizing recursion effectively. Streamline data processing tasks using modern R packages like dplyr for structured workflows. Efficiently process text and interact with databases to tackle a variety of data science projects. Author(s) Jaynal Abedin is an experienced data scientist and R programmer with a strong background in statistical modeling and data analysis. Over his career, Jaynal has worked on numerous data-intensive projects, helping individuals and organizations transform data insights into actionable strategies. He brings a clear and hands-on approach to teaching and writes with the goal of empowering readers to tackle complex problems using R. Who is it for? This book is perfect for developers looking to enhance their R programming expertise, particularly if they already have a basic understanding of R's fundamentals. Whether you're working in data science, statistics, or software development, this book provides actionable strategies for leveraging R's capabilities. If you're exploring advanced R programming or aiming to upskill in data applications, this book is an excellent resource.

R: Data Analysis and Visualization

Master the art of building analytical models using R About This Book Load, wrangle, and analyze your data using the world's most powerful statistical programming language Build and customize publication-quality visualizations of powerful and stunning R graphs Develop key skills and techniques with R to create and customize data mining algorithms Use R to optimize your trading strategy and build up your own risk management system Discover how to build machine learning algorithms, prepare data, and dig deep into data prediction techniques with R Who This Book Is For This course is for data scientist or quantitative analyst who are looking at learning R and take advantage of its powerful analytical design framework. It's a seamless journey in becoming a full-stack R developer. What You Will Learn Describe and visualize the behavior of data and relationships between data Gain a thorough understanding of statistical reasoning and sampling Handle missing data gracefully using multiple imputation Create diverse types of bar charts using the default R functions Familiarize yourself with algorithms written in R for spatial data mining, text mining, and so on Understand relationships between market factors and their impact on your portfolio Harness the power of R to build machine learning algorithms with real-world data science applications Learn specialized machine learning techniques for text mining, big data, and more In Detail The R learning path created for you has five connected modules, which are a mini-course in their own right. As you complete each one, you'll have gained key skills and be ready for the material in the next module! This course begins by looking at the Data Analysis with R module. This will help you navigate the R environment. You'll gain a thorough understanding of statistical reasoning and sampling. Finally, you'll be able to put best practices into effect to make your job easier and facilitate reproducibility. The second place to explore is R Graphs, which will help you leverage powerful default R graphics and utilize advanced graphics systems such as lattice and ggplot2, the grammar of graphics. You'll learn how to produce, customize, and publish advanced visualizations using this popular and powerful framework. With the third module, Learning Data Mining with R, you will learn how to manipulate data with R using code snippets and be introduced to mining frequent patterns, association, and correlations while working with R programs. The Mastering R for Quantitative Finance module pragmatically introduces both the quantitative finance concepts and their modeling in R, enabling you to build a tailor-made trading system on your own. By the end of the module, you will be well-versed with various financial techniques using R and will be able to place good bets while making financial decisions. Finally, we'll look at the Machine Learning with R module. With this module, you'll discover all the analytical tools you need to gain insights from complex data and learn how to choose the correct algorithm for your specific needs. You'll also learn to apply machine learning methods to deal with common tasks, including classification, prediction, forecasting, and so on. Style and approach Learn data analysis, data visualization techniques, data mining, and machine learning all using R and also learn to build models in quantitative finance using this powerful language.