talk-data.com talk-data.com

A

Speaker

Ash Berlin-Taylor

3

talks

Airflow PMC member & Director Airflow Engineering at Astronomer Astronomer

Director of Airflow Engineering at Astronomer; Airflow Committer & PMC Member.

Bio from: Airflow Monthly Virtual Town Hall- February

Frequent Collaborators

Filtering by: Airflow Summit 2024 ×

Filter by Event / Source

Talks & appearances

Showing 3 of 12 activities

Search activities →

10 years after its creation, Airflow is stronger than ever: in last year’s Airflow survey, 81% of users said Airflow is important or very important to their business, 87% said their Airflow usage has grown over time, and 92% said they would recommend Airflow. In this panel discussion, we’ll celebrate a decade of Airflow and delve into how it became the highly recommended industry standard it is today, including history, pivotal moments, and the role of the community. Our panel of seasoned experts will also talk about where Airflow is going next, including future use cases like generative AI and the highly anticipated Airflow 3.0. Don’t miss this insightful exploration into one of the most influential tools in the data landscape.

Gen AI has taken the computing world by storm. As Enterprises and Startups have started to experiment with LLM applications, it has become clear that providing the right context to these LLM applications is critical. This process known as Retrieval augmented generation (RAG) relies on adding custom data to the large language model, so that the efficacy of the response can be improved. Processing custom data and integrating with Enterprise applications is a strength of Apache Airflow. This talk goes into details about a vision to enhance Apache Airflow to more intuitively support RAG, with additional capabilities and patterns. Specifically, these include the following Support for unstructured data sources such as Text, but also extending to Image, Audio, Video, and Custom sensor data LLM model invocation, including both external model services through APIs and local models using container invocation. Automatic Index Refreshing with a focus on unstructured data lifecycle management to avoid cumbersome and expensive index creation on Vector databases Templates for hallucination reduction via testing and scoping strategies

Imagine a world where writing Airflow tasks in languages like Go, R, Julia, or maybe even Rust is not just a dream but a native capability. Say goodbye to BashOperators; welcome to the future of Airflow task execution. Here’s what you can expect to learn from this session: Multilingual Tasks: Explore how we empower DAG authors to write tasks in any language while retaining seamless access to Airflow Variables and Connections. Simplified Development and Testing: Discover how a standardized interface for task execution promises to streamline development efforts and elevate code maintainability. Enhanced Scalability and Remote Workers: Learn how enabling tasks to run on remote workers opens up possibilities for seamless deployment on diverse platforms, including Windows and remote Spark or Ray clusters. Experience the convenience of effortless deployments as we unlock new avenues for Airflow usage. Join us as we embark on an exploratory journey to shape the future of Airflow task execution. Your insights and contributions are invaluable as we refine this vision together. Let’s chart a course towards a more versatile, efficient, and accessible Airflow ecosystem.