talk-data.com talk-data.com

Filter by Source

Select conferences and events

People (10 results)

See all 10 →

Companies (1 result)

Artefact 1 speaker
Managing Partner & Global Co-lead Travel, Tourism & Transportation

Activities & events

Title & Speakers Event
Ian Tweedie – Senior Technical Consultant | 16x Microsoft Certified | Blogger | Power Apps Super User @ Capgemini

Ditch the hand-cranked Word specs and kill your documentation debt for good. In this 45-minute demo you’ll see the Power Platform Documentation Extension turn every pipeline run into living, version-controlled docs—complete with ER-diagrams, data dictionaries, security-role matrices, option-set tables and workflow summaries. We’ll wire the extension into Azure DevOps, commit Markdown/Branded Word Documents artefacts back to Git. By session-end you’ll have a reusable YAML snippet that can be added to any Power Platform CI/CD flow.

power platform documentation extension Azure DevOps Git markdown word documents YAML ci/cd er-diagrams data dictionaries security-role matrices option-set tables workflow summaries
Dan Rey – MVP, MCT

Showcase this new feature in Windows Insiders Canary builds!

windows 11 copilot pc
Shadrack Kiprotich – Copilot Studio & Power Automate Microsoft MVP

Microsoft Copilot Agents are quickly becoming a core part of modern enterprise applications, blending AI with workflow automation to accelerate digital transformation. With Microsoft Copilot Studio, developers and solution architects can design, extend, and integrate custom AI-powered assistants that operate securely within the Microsoft ecosystem. This session takes a deep dive into the technical capabilities of Copilot Studio and demonstrates how to build Copilot agents that go far beyond simple Q&A. We’ll cover end-to-end development patterns authoring conversational logic, integrating with Power Platform connectors, calling APIs and plugins, and leveraging Dataverse for secure data access. Attendees will also learn how to apply responsible AI principles, manage lifecycle deployment, and optimize performance in real-world scenarios. Technical Takeaways: By the end of this session, attendees will be able to: 1. Author and Customize Copilot Agents – Build a Copilot agent from scratch in Copilot Studio, design conversation flows, and implement prompt engineering patterns. 2. Integrate with Power Platform – Automate approvals, orchestrate workflows, and trigger Power Automate flows directly from Copilot interactions. 3. Connect to Data Sources – Use Dataverse, SharePoint, SQL, and external APIs to fetch, update, and process business-critical data securely. 4. Extend Functionality – Implement custom connectors, plugins, and API calls to extend Copilot beyond Microsoft 365 and tailor it for industry-specific use cases. 5. Enhance Productivity with AI – Embed capabilities like document summarization, knowledge mining, translation, and report generation into enterprise workflows. 6. Manage Governance and Deployment – Apply AI ethics, responsible usage, security, and monitoring practices to ensure compliance and scalable adoption. This session is designed for developers, solution architects, and IT professionals who want to move past demos and actually build enterprise-grade Copilot agents. Through real-world use cases and technical walkthroughs, attendees will leave with a blueprint for integrating Copilot Studio into modern business solutions.

copilot studio power platform connectors dataverse sharepoint SQL external apis custom connectors plugins api calls document summarization knowledge mining translation report generation ai ethics governance deployment
Yves-Marie Devay – Directeur Business Intelligence @ Bertrand Franchisé (Burger King France) , Florent Bernard – Managing Partner & Global Co-lead Travel, Tourism & Transportation @ Artefact
AI/ML
Big Data & AI Paris 2025

Nos organisations sont submergées par une quantité croissante d’informations à traiter, de plus en plus rapidement. Résultat : les experts s’épuisent à vouloir prendre des décisions claires dans un environnement bruyant et complexe. Aujourd’hui, on oscille entre deux extrêmes : l’analyse humaine, trop lente ; l’IA, souvent déconnectée du contexte réel. Le vrai problème n’est pas l’humain ou la machine, mais l’interface entre les deux. Cette présentation de 10 minutes introduit un nouveau cadre de travail : l’Orchestration Agentique LEAN. L’idée ? L’humain pilote une équipe d’agents IA spécialisés. Chaque agent fait une tâche précise : analyser des données, proposer des actions, structurer des idées. Cette session vous donnera les clés pour repenser la collaboration homme-IA, non plus comme une simple assistance, mais comme une véritable co-création cognitive. À travers un exemple concret, vous verrez comment ce modèle permet de transformer plus facilement des idées complexes en décisions claires. Ce n’est pas de la science-fiction, c’est une méthode pragmatique pour booster l’innovation dans vos équipes.

ai orchestration agentique lean agent-based systems

Héberger une application, c’est un peu comme faire évoluer un Pokémon. On commence avec un petit serveur maison ou un VPS, on monte en puissance avec l’IaaS, mais on découvre aussi de nouvelles contraintes à chaque étape. Et puis arrive le PaaS, la méga évolution qui permet de se concentrer sur son app plutôt que sur l'infrastructure. Dans ce talk, je vous propose un voyage à travers ces différentes approches d’hébergement pour comprendre leurs forces, leurs limites, et pourquoi pas les attraper tous !

vps iaas paas

Le Data Mesh est souvent perçu comme un simple mot à la mode. Pourtant, derrière ce terme se cache une transformation profonde dans la manière dont les organisations structurent et font évoluer leur stratégie data. Dans cette présentation, nous allons : Expliquer ce qu’est réellement le Data Mesh, au-delà des buzzwords ; Comprendre pourquoi ce concept est apparu, en réponse aux limites des architectures centralisées traditionnelles ; Explorer ses quatre piliers fondamentaux : Domain ownership, Data as a product, Self-serve data platform, Federated governance. L’objectif est de démystifier le concept, d’identifier dans quels contextes il est pertinent de le mettre en œuvre, et de souligner les conditions nécessaires à sa réussite. Enfin, nous verrons les premiers pas concrets qu’un CDO ou CIO peut entreprendre pour amorcer cette transformation vers une approche Data Mesh.

data mesh

Deux royaumes s’opposent depuis des âges immémoriaux, séparés par une rivalité sans fin. D’un côté, le puissant royaume du Frontend, avec son JavaScript omnipotent, façonnant des interfaces dignes des plus grandes cités elfiques. De l’autre, le robuste empire du Backend, maître incontesté des données, envoyant ses légions de JSON dans une bataille sans merci. Une prophétie murmure le nom d’un artefact légendaire, forgé pour unir ces royaumes ennemis : Inertia js. Découvrirons son véritable pouvoir à travers du code concret et, peut-être, ramènerons enfin la paix dans le royaume du développement web.

inertia.js JavaScript
Crafting Products #16 2025-06-25 · 16:45

Seizième édition, même ADN : du concret, zéro bullshit.

Cette fois, on se penche sur la façon dont la génération IA et les approches agentic redéfinissent le produit.

2 talks + 1 lightening talk.

1️⃣🎙 Scaling Data Self-Service : 3 ans d’apprentissages chez Back Market Speaker : Capucine Delecourt – Group Data Product Manager @ Back Market

Ce retour d’expérience retrace les différentes étapes de la mise en place du self-service data chez Back Market : de l’approche initiale basée sur les formations, à une vision plus produit centrée sur les besoins utilisateurs. On y évoque les succès comme les limites, les difficultés rencontrées autour de l’outillage (LLM, outils de data viz), l’importance des fondations techniques (documentation, gouvernance, usage réel), ainsi que les ajustements nécessaires face à la montée des coûts. L’objectif est de partager des enseignements concrets sur ce qu’implique réellement une démarche de data self-service à l’échelle.

👩 Speaker: Capucine Delecourt est Group Data Product Manager chez Back Market. Après 7 ans de conseil en data product management auprès de nombreuses entreprises, où elle a pu explorer des sujets variés allant du machine learning à l’analyse produit, elle rejoint Back Market il y a trois ans pour piloter une équipe de PM dédiée aux enjeux data. Avec son équipe, elle travaille notamment à la construction d’une plateforme data scalable, au développement du self-service, et à l’intégration des bonnes pratiques produit dans un écosystème résolument technique.

2️⃣🎙 Les agents IA peuvent-ils remplacer une équipe Scrum ? Speaker : Renaud Chevalier – CTO @ Thiga

Afin de répondre à cette question, nous avons mené une expérimentation en 3 étapes testant les capacités d'IA « facilement accessibles » aujourd'hui : 1. Un assistant personnel avec un Custom GPT OpenAI 2. L'automatisation de workflows avec n8n 3. Des agents autonomes avec Flowise

Conclusion : L'IA ne remplacera pas les équipes Scrum, mais elle balaye tous nos repères (collaboration, rôles, artefacts, événements, pratiques, méthodes…). Nous entrons dans une ère de création produit radicalement différente, où paradoxalement l'agilité devient plus cruciale que jamais.

Une session accessible qui ouvre le débat sur l'avenir du travail d'équipe à l'ère des agents IA.

🎤 Speaker: Renaud Chevalier En tant que CTO et Agent Builder chez Thiga, je conçois des architectures d'Agents IA qui transforment la façon dont les équipes Produit travaillent et créent de la valeur. De la R&D aux implémentations en production, je teste et industrialise les approches qui amplifient réellement l'impact business.

⚡️🎙 Reimagining UX with Agents Speaker : Naji Alazhar – Cofounder @ Umans AI

En développant la plateforme multi-agents umans.ai, trois techniques nous ont bousculé les repères UX. Nous expliquerons ce que c’est, comment on le fait, et les opportunités créées :

  • Remote agents + UI générative : La conversation génère l’interface à la volée, pendant que des agents distants exécutent des actions : l’utilisateur reste dans son flow, les clics disparaissent.
  • Recherche Agentic : Dans une recherche augmentée, l’agent relance la recherche, ajuste la question au contexte et ramène une réponse plus ciblée.
  • Mémoire d’agent : Un agent qui se souvient de vous peut nettement améliorer la qualité des interactions.

Venez challenger ces pistes et nourrir la réflexion avec vos propres expériences.

Plus d'infos à suivre...

Crafting Products #16

We are pleased to invite you to our upcoming meetup co-organized with Artefact on April 16 at the Artefact Utrecht Office. Get ready for a deep dive into the AI-assisted programming for data engineers: beyond the vibe coding hype. Wanga Mulaudzi will share her journey from astrophysics to AI-powered code migration, while Adithya Krishnan will unravel the mysteries of context in AI-assisted tooling. Whether you're into space, code, or just curious how AI thinks, this one’s for you. 🚀💡

SCHEDULE 18:00-19:00: Welcome with food and drinks! 🙌 19:00-19:45: Talk 1 - Artefact - GenAI for Code Migration: My Journey From Supermassive Black Holes to Supermassive Codebases 19:45-20:00: Break 20:00-20:45: Talk 2 - MotherDuck - Hold on, where's my context...? 20:45-22:00: Networking / drinks!

TALKS [Talk 1]: “GenAI for Code Migration: My Journey From Supermassive Black Holes to Supermassive Codebases" by Wanga Mulaudzi

This talk explores the parallels between problem-solving in Astrophysics and tech, with a focus on Generative AI. From simulating the first image of the M87 black hole as part of the Event Horizon Telescope collaboration to developing AI-powered tools for code migration, we’ll dive into the challenges of computational modeling, automation, and large-scale migration of legacy code. We'll discuss the transition from academia to tech and examine how GenAI accelerates automation—contrasting the manual, high-performance computing workflows used in Astrophysics with GenAI now revolutionizing code migration. Expect insights into black holes, Python-driven automation, and lessons learned from tackling complex problems at the intersection of science and technology.

[Talk 2]: “Hold on\, where's my context...?" by Adithya Krishnan

Much of AI-assisted tooling depends significantly on obtaining the appropriate context for the specific task. But how exactly do these AI tools retrieve and utilize this context? And how can you, as a user, effectively provide and work with this context? That's exactly what I'll be talking about :)

DIRECTIONS

Address: Creative Valley building. Stationsplein 32, 3511 ED, Utrecht.

Directly next to the Utrecht central train station, you’ll find the Artefact office in the Creative Valley building.

AI-assisted programming for data engineers: beyond the vibe coding hype

Mark your calendar for the next session of the PyData Paris Meetup, on April 8th 2025. This Meetup will be hosted by Artefact, a global leader in data and AI consulting services, in their offices, 19 rue Richer 75009 Paris. The speakers for this session will be Martin Renou, Abdoulaye Sakho and Vincent Auriau.

Schedule 6:45pm - 7:00pm: Arrival 7:00pm - 7:15pm: Community announcements & short address by Emmanuel Malherbe, Director of Artefact Research Center 7:15pm - 8:00pm: Real-time collaborative editors in JupyterLab, Martin Renou 8:00 - 8:15pm: Handling imbalance data for client scoring, Abdoulaye Sakho 8:15 - 8:30pm: Choice modeling with the Python package choice-learn, Vincent Auriau 8:30pm - 10:00pm: Networking & drinks

Speakers Martin Renou Martin Renou is a Technical Director at QuantStack and a maintainer of Project Jupyter. Among other projects Martin is a core team member of the ipywidgets project and maintains many Jupyter widget packages such as ipyleaflet, ipydatagrid, ipygany, ipycanvas, and bqplot. He is a co-creator of the Voilà dashboarding system, and the xeus-python kernel.

Abdoulaye Sakho Abdoulaye Sakho is a graduate of ENSIIE and the M2 Random Modeling program at Université Paris Cité. He is currently doing a CIFRE thesis at LPSM (Sorbonne University) under the supervision of Erwan SCORNET and Emmanuel MALHERBE. He is a member of the Artefact Research Center.

Vincent Auriau Vincent is a PhD student at Artefact and CentraleSupélec, under the supervision of Vincent Mousseau. His work focuses on modeling customer preferences for assortment optimization. Previously he was a Data Scientist at L'Oréal R&I where he worked on different computer vision projects.

Abstracts Real-time collaborative editors in JupyterLab Jupyter has long been a powerful tool for interactive computing, but real-time collaboration has been a missing piece. In this talk, I’ll present our work on bringing true collaborative editing to JupyterLab, allowing multiple users to work on the same notebook simultaneously. The highlight of the talk will be a live demo showcasing JupyterGIS for collaborative GIS editing and JupyterCAD for real-time 3D CAD collaboration. I’ll also cover the technical foundations and challenges we faced in making these advanced editors work seamlessly in a collaborative environment.

Handling imbalance data for client scoring In data science, we talk about unbalanced data in a binary classification context when one class is under-represented compared with the other. Typically, it is the class of interest that is under-represented (cheaters, customers who bought a product on a site, sick patients...). In such a context, it is hard to train ML models. To tackle this challenge, various rebalancing strategies have been introduced in the literature. Throughout our presentation, we will focus on the oversampling strategies, which aim to generate synthetic data within the minority class to rebalance the data. SMOTE is the most common oversampling strategy, and many variants are based on it. We will also propose an alternative based on kernel estimation and generalized random forests. Finally, we will take a look at these techniques and observe their interest in a concrete use case from the banking industry.

Choice modeling with the Python package choice-learn Discrete choice models aim at predicting choices made by individuals from a set of options, called an assortment. Such models are used as inputs to operational problems such as assortment optimization, pricing or product recommendation. We present Choice-Learn, a Python package for choice modeling practitioners and researchers. The package enables processing choice data, and then formulating, estimating, and operationalizing choice models based on the TensorFlow library. We provide a unified implementation of classical choice models as well as neural network-based methods.

PyData Paris - April 2025 Meetup
Big Data LDN 2024
Exhibitors' Events - Auto created
Tanay Mehta – Kaggle Grandmaster

In this session, I will talk about using Lance file format to manage deep learning artefacts. More specifically, saving, loading and versioning model weights. I will also be demonstrating a Proof-of-Concept on this topic.

Lance
Mischa van Kesteren – Moderator @ Nexgen Cloud

In this session we will go over some of the key considerations for a new AI application/startup, what things are often overlooked and which may be given too much weight. Then we'll have a go at putting those thoughts into practice.

AI/ML

July is almost over and on 7 August we’d like to invite you to our meetup hosted by Artefact at their office in Utrecht, directly next to the Utrecht central train station! The meetup theme is centered around how to bring GenAI to production, but not just production, production to the next level. More specifically, the Artefact team will demonstrate how they use GenAI for the generation of customized, production-ready marketing images and the Phospho team will illustrate how to integrate robust ML best practices on scales of quality metrics for GenAI products. See you there!

SCHEDULE

  • 18:00-19:00: Welcome with food and drinks! 🙌
  • 19:00-19:45: Talk 1 - "GenAI Image Interaction: a next step beyond LLM text chatbots"
  • 19:45-20:00: Break
  • 20:00-20:45: Talk 2 - "Emerging best practices in Analyzing Usage Patterns and Quantifying Quality Metrics for GenAI Products"
  • 20:45-22:00: Networking / drinks!

TALKS

[Talk 1]: “GenAI Image Interaction: a next step beyond LLM text chatbots" by Arthur Lambert & Priya Sarkar We've all experienced the capabilities of GenAI chatbots for data interaction. Now, it's time to explore the new GenAI innovations that Artefact is developing. Discover how GenAI is transforming marketing by accelerating asset creation and reducing costs. In this talk, we'll demonstrate how we're using GenAI to generate customized, production-ready marketing images. You'll also gain insights into automating the processes, enhancing efficiency for creativity based applications and learn about the quality metrics essential for monitoring and enhancing model performance.

[Talk 2]: “Emerging best practices in Analyzing Usage Patterns and Quantifying Quality Metrics for GenAI Products" by Paul-Louis Venard & Pierre-Louis Biojout Discover how to apply machine learning (ML) emerging best practices to Generative AI (GenAI) applications, specifically focusing on Large Language Models (LLMs) and diffusion models. This talk targets ML engineers and developers aiming to enhance their GenAI products through a quantified evaluation of model quality and user interaction analysis. Learn to implement rigorous, measurable standards to improve and understand GenAI applications.

The rapid advancement in Generative AI technologies, including LLMs and diffusion models, has empowered ML engineers and developers to build new and powerful products. However, the integration of robust ML best practices into the development of these products is still nascent. This session aims to bridge that gap by introducing established methodologies from traditional ML to enhance the reliability and effectiveness of GenAI applications.

DIRECTIONS Directly next to the Utrecht central train station, you’ll find the Artefact office in the Creative Valley building. The address is: Stationsplein 32, 3511 ED, Utrecht.

Next level GenAI innovation to production: image interaction and quality metrics

In this session, you will learn how to create a YAML Pipeline for Azure Data Factory in Azure DevOps for continuous integration and delivery. The pipeline validates the ARM template and exports the template into a build artefact that can be used by a release pipeline. The benefit of this process is that you can point your release pipeline to this artefact instead of the existing adf_publish branch.

Create a YAML CICD Pipeline for Azure Data Factory
Power Platform Admin Center 2024-04-03 · 22:00

Descripción de la sesión Conozcamos los nuevos recursos en el Centro de Administración de Power Platform nativo; como gestionar los servicios, complementos; asi como el monitoreo de Dataverse y demás artefactos de Power Platform.

Enlace Complementario https://learn.microsoft.com/power-platform/admin/admin-documentation/?wt.mc_id=3reg_22124_webpage_reactor

Orador Mayra Badillo Villamizar - Microsoft MVP

Power Platform Admin Center

Évènement chez OCTO Technology (34 avenue de l'Opéra Paris)

80 places en physique - Merci de renseigner votre nom et prénom

#1 - CI/CD, la construction d’artefacts à l’heure du ML Sofia Calcagno - ML Engineer @OCTO Technology

La CI/CD permet de construire et déployer de manière automatique et robuste un logiciel. Le ML apporte un artefact supplémentaire à construire : le modèle de Machine Learning. Extrait du livre Culture MLOps, en 30 minutes, Sofia explorera les impacts sur la CI/CD de la gestion du modèle de ML.

#2 MLOps dans le secteur public : le cas des Finances publiques Claire Behar, Chief of Staff, équipe Data Engineering, Analytics & DataOps @DTNum au sein de la Direction Générale des Finances Publiques

De nombreux cas d’usages Data Science ont conduit les équipes de la Délégation à la transformation numérique (DTNum) de la Direction générale des Finances publiques (DGFiP) à mettre en place un prototype de ML Plateforme. Claire Behar partagera les challenges rencontrés ainsi que les perspectives de mise en place d'une démarche Green & MLOps, le numérique écoresponsable étant au cœur de la stratégie de l’État.

#3 REX: du Drift Monitoring dans l'aviation civile Mae Yener, MLOps Engineer @Hymaia

Un retour d'expérience à froid sur la conception d'un outil de monitoring du Model Drift pour Air France: enjeux, challenges, et ce que l'on peut en apprendre

Paris Data Ladies #46 - MLOps

Artificial Intelligence is at the core of Doctrine’s business. Over the years, they have developed over 30 Machine Learning models that are still running in production today. Two years ago, they realized that iterating over their models was becoming slow and cumbersome, mainly because of technical debt and a lack of automation. To solve this challenge, they assembled a task force of three engineers: David Huang, Ysé Wanono, and Aïmen Louafi. Over the span of a year and a half, they gathered the needs of Machine Learning Engineers, benchmarked tools, and then implemented a new architecture covering data labeling, exploration, hyperparameters tuning, experiment tracking, artefacts management, deployment, and monitoring.

⏰ Schedule

  • 18h30 - 19h00: Welcome & Introduction 👋
  • 19h00 - 19h45: Talk 🎙
  • 19h45 - 20h00: Q&A Session 🙋‍♀️
  • 20h00 - 22h00: Cocktail & Networking 🥂

🎙 About the speakers

David Huang is Machine Learning Engineer at Doctrine. During his career he has used Machine Learning on a range of topics: time series, images and, particularly at Doctrine, text. David is also a co-organizer of the Paris NLP meetups.

Ysé Wanono is Data Scientist and Data Engineer at Doctrine with previous experiences in statistical modeling at both consulting and tech startups. Ysé has been with Doctrine for more than 4 years, and for the past 2 years her focus has been on improving their MLOps lifecycle.

Aïmen Louafi is Machine Learning Engineer at Doctrine. He's fond of Computer Science, Mathematics, Machine learning. In the past, he had the opportunity to work with Graph Algorithms, OCR, Vector Search Engines, and much more.

🙌 Sponsors

Doctrine is a legal intelligence platform that uses technology to make legal analysis more credible.

nibble is the creator of spice, a Feature Platform for Machine Learning. We are also the organizers of these meetups :)

🤩 Audience

This is a meetup for data professionals who want to push forward the productionization of machine learning development within their organizations: data scientists, data engineers, software and devops engineers, data project/product managers, product designers, etc..

👋 Contact

For any inquiries, please contact [email protected]

Architecting MLOps: Doctrine's Path to Success