Every year kicks off with an air of expectation. How much of our Professional Life in 2025 is going to look a lot like 2024? How much will look different, but we have a pretty good idea of what the difference will be? What will surprise us entirely—the unknown unknowns? By definition, that last one is unknowable. But we thought it would be fun to sit down with returning guest Barr Moses from Monte Carlo to see what we could nail down anyway. The result? A pretty wide-ranging discussion about data observability, data completeness vs. data connectedness, structured data vs. unstructured data, and where AI sits from an input and an output and a processing engine. And more. Moe and Tim even briefly saw eye to eye on a thing or two (although maybe that was just a hallucination). For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.
talk-data.com
Topic
Monte Carlo
3
tagged
Activity Trend
Top Events
When it comes to data, there are data consumers (analysts, builders and users of data products, and various other business stakeholders) and data producers (software engineers and various adjacent roles and systems). It's all too common for data producers to "break" the data as they add new features and functionality to systems as they focus on the operational processes the system supports and not the data that those processes spawn. How can this be avoided? One approach is to implement "data contracts." What that actually means… is the subject of this episode, which Shane Murray from Monte Carlo joined us to discuss! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.
You know that sinking feeling: the automated report went out first thing Monday morning, and your Slack messages have been blowing up ever since because revenue flatlined on Saturday afternoon! You frantically start digging in (spilling your coffee in the process!) while you're torn between hoping that it's "just a data issue" (which would be good for the company but a black mark on the data team) and that it's a "real issue with the site" (not good for the business, but at least your report was accurate!). Okay. So, maybe you've never had that exact scenario, but we've all dealt with data breakages occurring in various unexpected nooks and crannies of our data ecosystem. It can be daunting to make a business case to invest in monitoring and observing all the various data pipes and tables to proactively identify data issues. But, as our data gets broader and deeper and more business-critical, can we afford not to? On this episode, we were joined by Barr Moses, co-founder and CEO of Monte Carlo to chat about practical strategies and frameworks for monitoring data and reducing data downtime! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.