Traditional time-based scheduling in Airflow can lead to inefficiencies and delays. With Airflow 3.0, we can now leverage native event-driven DAG execution, enabling workflows to trigger instantly when data arrives—eliminating polling-based sensors and rigid schedules. This talk explores real-time orchestration using Airflow 3.0 and Google Cloud Pub/Sub. We’ll showcase how to build an event-driven pipeline where DAGs automatically trigger as new data lands, ensuring faster and more efficient processing. Through a live demo, we’ll demonstrate how Airflow listens to Pub/Sub messages and dynamically triggers dbt transformations only when fresh data is available. This approach improves scalability, reduces costs, and enhances orchestration efficiency. Key Takeaways: How event-driven DAGs work vs. traditional scheduling, Best practices for integrating Airflow with Pub/Sub,Eliminating polling-based sensors for efficiency,Live demo: Event-driven pipeline with Airflow 3.0, Pub/Sub & dbt. This session will showcase how Airflow 3.0 enables truly real-time orchestration.
talk-data.com
Topic
Pub/Sub
2
tagged
Activity Trend
Top Events
Looking for a way to streamline your data workflows and master the art of orchestration? As we navigate the complexities of modern data engineering, Airflow’s dynamic workflow and complex data pipeline dependencies are starting to become more and more common nowadays. In order to empower data engineers to exploit Airflow as the main orchestrator, Airflow Datasets can be easily integrated in your data journey. This session will showcase the Dynamic Workflow orchestration in Airflow and how to manage multi-DAGs dependencies with Multi-Dataset listening. We’ll take you through a real-time data pipeline with Pub/Sub messaging integration and dbt in Google Cloud environment, to ensure data transformations are triggered only upon new data ingestion, moving away from rigid time-based scheduling or the use of sensors and other legacy ways to trigger a DAG.