talk-data.com talk-data.com

Event

Data Skeptic

2014-05-23 – 2025-11-23 Podcasts Visit website ↗

Activities tracked

39

The Data Skeptic Podcast features interviews and discussion of topics related to data science, statistics, machine learning, artificial intelligence and the like, all from the perspective of applying critical thinking and the scientific method to evaluate the veracity of claims and efficacy of approaches.

Filtering by: Data Science ×

Sessions & talks

Showing 26–39 of 39 · Newest first

Search within this event →

Bayesian A/B Testing

2015-10-23 Listen
podcast_episode

Today's guest is Cameron Davidson-Pilon. Cameron has a masters degree in quantitative finance from the University of Waterloo. Think of it as statistics on stock markets. For the last two years he's been the team lead of data science at Shopify. He's the founder of dataoragami.net which produces screencasts teaching methods and techniques of applied data science. He's also the author of the just released in print book Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference, which you can also get in a digital form. This episode focuses on the topic of Bayesian A/B Testing which spans just one chapter of the book. Related to today's discussion is the Data Origami post The class imbalance problem in A/B testing. Lastly, Data Skeptic will be giving away a copy of the print version of the book to one lucky listener who has a US based delivery address. To participate, you'll need to write a review of any site, book, course, or podcast of your choice on datasciguide.com. After it goes live, tweet a link to it with the hashtag #WinDSBook to be given an entry in the contest. This contest will end November 20th, 2015, at which time I'll draw a single randomized winner and contact them for delivery details via direct message on Twitter.

The Model Complexity Myth

2015-09-11 Listen
podcast_episode

There's an old adage which says you cannot fit a model which has more parameters than you have data. While this is often the case, it's not a universal truth. Today's guest Jake VanderPlas explains this topic in detail and provides some excellent examples of when it holds and doesn't. Some excellent visuals articulating the points can be found on Jake's blog Pythonic Perambulations, specifically on his post The Model Complexity Myth. We also touch on Jake's work as an astronomer, his noteworthy open source contributions, and forthcoming book (currently available in an Early Edition) Python Data Science Handbook.

Measuring the Influence of Fashion Designers

2015-08-14 Listen
podcast_episode

Yusan Lin shares her research on using data science to explore the fashion industry in this episode. She has applied techniques from data mining, natural language processing, and social network analysis to explore who are the innovators in the fashion world and how their influence effects other designers. If you found this episode interesting and would like to read more, Yusan's papers Text-Generated Fashion Influence Model: An Empirical Study on Style.com and The Hidden Influence Network in the Fashion Industry are worth reading.

Data Science at Work in LA County

2015-07-29 Listen
podcast_episode
Kyle Polich , Benjamin Uminsky (Los Angeles County Registrar-Recorder/County Clerk)

In this episode, Benjamin Uminsky enlightens us about some of the ways the Los Angeles County Registrar-Recorder/County Clerk leverages data science and analysis to help be more effective and efficient with the services and expectations they provide citizens. Our topics range from forecasting to predicting the likelihood that people will volunteer to be poll workers. Benjamin recently spoke at Big Data Day LA. Videos have not yet been posted, but you can see the slides from his talk Data Mining Forecasting and BI at the RRCC if this episode has left you hungry to learn more. During the show, Benjamin encouraged any Los Angeles residents who have some time to serve their community consider becoming a pollworker.

Proposing Annoyance Mining

2015-06-09 Listen
podcast_episode

A recent episode of the Skeptics Guide to the Universe included a slight rant by Dr. Novella and the rouges about a shortcoming in operating systems.  This episode explores why such a (seemingly obvious) flaw might make sense from an engineering perspective, and how data science might be the solution. In this solo episode, Kyle proposes the concept of "annoyance mining" - the idea that with proper logging and enough feedback, data scientists could be provided the right dataset from which they can detect flaws and annoyances in software and other systems and automatically detect potential bugs, flaws, and improvements which could make those systems better. As system complexity grows, it seems that an abstraction like this might be required in order to keep maintaining an effective development cycle.  This episode is a bit of a soap box for Kyle as he explores why and how we might track an appropriate amount of data to be able to make better software and systems more suited for the users.

Oceanography and Data Science

2015-03-13 Listen
podcast_episode

Nicole Goebel joins us this week to share her experiences in oceanography studying phytoplankton and other aspects of the ocean and how data plays a role in that science.   We also discuss Thinkful where Nicole and I are both mentors for the Introduction to Data Science course. Last but not least, check out Nicole's blog Data Science Girl and the videos Kyle mentioned on her Youtube channel featuring one on the diversity of phytoplankton and how that changes in time and space.

NYC Speed Camera Analysis with Tim Schmeier

2015-02-27 Listen
podcast_episode
Kyle Polich , Tim Schmeier (NYC Data Science Academy)

New York State approved the use of automated speed cameras within a specific range of schools. Tim Schmeier did an analysis of publically available data related to these cameras as part of a project at the NYC Data Science Academy. Tim's work leverages several open data sets to ask the questions: are the speed cameras succeeding in their intended purpose of increasing public safety near schools? What he found using open data may surprise you. You can read Tim's write up titled Speed Cameras: Revenue or Public Safety? on the NYC Data Science Academy blog. His original write up, reproducible analysis, and figures are a great compliment to this episode. For his benevolent recommendation, Tim suggests listeners visit Maddie's Fund - a data driven charity devoted to helping achieve and sustain a no-kill pet nation. And for his self-serving recommendation, Tim Schmeier will very shortly be on the job market. If you, your employeer, or someone you know is looking for data science talent, you can reach time at his gmail account which is timothy.schmeier at gmail dot com.

The Science of Online Data at Plenty of Fish with Thomas Levi

2014-12-05 Listen
podcast_episode
Thomas Levi (Plenty of Fish) , Kyle Polich

Can algorithms help you find love? Many happy couples successfully brought together via online dating websites show us that data science can help you find love. I'm joined this week by Thomas Levi, Senior Data Scientist at Plenty of Fish, to discuss some of his work which helps people find one another as efficiently as possible. Matchmaking is a truly non-trivial problem, and one that's dynamically changing all the time as new users join and leave the "pool of fish". This episode explores the aspects of what makes this a tough problem and some of the ways POF has been successfully using data science to solve it, and continues to try to innovate with new techniques like interest matching. For his benevolent references, Thomas suggests readers check out All of Statistics as well as the caret library for R. And for a self serving recommendation, follow him on twitter (@tslevi) or connect with Thomas Levi on Linkedin.

Mining the Social Web with Matthew Russell

2014-11-07 Listen
podcast_episode
Matthew Russell (Digital Reasoning) , Kyle Polich

This week's episode explores the possibilities of extracting novel insights from the many great social web APIs available. Matthew Russell's Mining the Social Web is a fantastic exploration of the tools and methods, and we explore a few related topics. One helpful feature of the book is it's use of a Vagrant virtual machine. Using it, readers can easily reproduce the examples from the book, and there's a short video available that will walk you through setting up the Mining the Social Web virtual machine. The book also has an accompanying github repository which can be found here. A quote from Matthew that particularly reasonates for me was "The first commandment of Data Science is to 'Know thy data'." Take a listen for a little more context around this sage advice. In addition to the book, we also discuss some of the work done by Digital Reasoning where Matthew serves as CTO. One of their products we spend some time discussing is Synthesys, a service that processes unstructured data and delivers knowledge and insight extracted from the data. Some listeners might already be familiar with Digital Reasoning from recent coverage in Fortune Magazine on their cognitive computing efforts. For his benevolent recommendation, Matthew recommends the Hardcore History Podcast, and for his self-serving recommendation, Matthew mentioned that they are currently hiring for Data Science job opportunities at Digital Reasoning if any listeners are looking for new opportunities.

Practicing and Communicating Data Science with Jeff Stanton

2014-10-24 Listen
podcast_episode

Jeff Stanton joins me in this episode to discuss his book An Introduction to Data Science, and some of the unique challenges and issues faced by someone doing applied data science. A challenge to any data scientist is making sure they have a good input data set and apply any necessary data munging steps before their analysis. We cover some good advise for how to approach such problems.

Contest Announcement

2014-10-08 Listen
podcast_episode

The Data Skeptic Podcast is launching a contest- not one of chance, but one of skill. Listeners are encouraged to put their data science skills to good use, or if all else fails, guess! The contest works as follows. Below is some data about the cumulative number of downloads the podcast has achieved on a few given dates. Your job is to predict the date and time at which the podcast will recieve download number 27,182. Why this arbitrary number? It's as good as any other arbitrary number! Use whatever means you want to formulate a prediction. Once you have it, wait until that time and then post a review of the Data Skeptic Podcast on iTunes. You don't even have to leave a good review! The review which is posted closest to the actual time at which this download occurs will win a free copy of Matthew Russell's "Mining the Social Web" courtesy of the Data Skeptic Podcast. "Price is Right" rules are in play - the winner is the person that posts their review closest to the actual time without going over. More information at dataskeptic.com

Data Science at ZestFinance with Marick Sinay

2014-09-12 Listen
podcast_episode
Marick Sinay (ZestFinance) , Kyle Polich

Marick Sinay from ZestFianance is our guest this weel.  This episode explores how data science techniques are applied in the financial world, specifically in assessing credit worthiness.  

Streetlight Outage and Crime Rate Analysis with Zach Seeskin

2014-07-18 Listen
podcast_episode

This episode features a discussion with statistics PhD student Zach Seeskin about a project he was involved in as part of the Eric and Wendy Schmidt Data Science for Social Good Summer Fellowship.  The project involved exploring the relationship (if any) between streetlight outages and crime in the City of Chicago.  We discuss how the data was accessed via the City of Chicago data portal, how the analysis was done, and what correlations were discovered in the data.  Won't you listen and hear what was found? 

Introduction

2014-05-23 Listen
podcast_episode

The Data Skeptic Podcast features conversations with topics related to data science, statistics, machine learning, artificial intelligence and the like, all from the perspective of applying critical thinking and the scientific method to evaluate the veracity of claims and efficacy of approaches. This first episode is a short discussion about what this podcast is all about.