Agent-Ready Governance - Designing For Human and Machine Consumers
For years, data governance has been about guiding people and their interpretations. We build glossaries, descriptions and documentation to keep analysts and business users aligned. But what happens when your primary “user” isn’t human? As agentic workflows, LLMs, and AI-driven decision systems become mainstream, the way we govern data must evolve. The controls that once relied on human interpretation now need to be machine-readable, unambiguous, and able to support near-real-time reasoning. The stakes are high: a governance model designed for people may look perfectly clear to us but lead an AI straight into hallucinations, bias, or costly automation errors.
This session explores what it really means to make governance “AI-ready.” We’ll look at the shift from human-centric to agent-centric governance, practical strategies for structuring metadata so that agents can reliably understand and act on it, and what new risks emerge when AI is the primary consumer of your data catalog. We'll discuss patterns, emerging practices, and a discuss how to transition to a new governance operating model. Whether you’re a data leader, platform engineer, or AI practitioner, you’ll leave with an appreciation of governance approaches for a world where your first stakeholder might not even be human.