talk-data.com talk-data.com

Emanuele Fabbiani

Speaker

Emanuele Fabbiani

2

talks

Filter by Event / Source

Talks & appearances

2 activities · Newest first

Search activities →
Advanced Polars: Lazy Queries and Streaming Mode

Do you find yourself struggling with Pandas' limitations when handling massive datasets or real-time data streams?

Discover Polars, the lightning-fast DataFrame library built in Rust. This talk presents two advanced features of the next-generation dataframe library: lazy queries and streaming mode.

Lazy evaluation in Polars allows you to build complex data pipelines without the performance bottlenecks of eager execution. By deferring computation, Polars optimises your queries using techniques like predicate and projection pushdown, reducing unnecessary computations and memory overhead. This leads to significant performance improvements, particularly with datasets larger than your system’s physical memory.

Polars' LazyFrames form the foundation of the library’s streaming mode, enabling efficient streaming pipelines, real-time transformations, and seamless integration with various data sinks.

This session will explore use cases and technical implementations of both lazy queries and streaming mode. We’ll also include live-coding demonstrations to introduce the tool, showcase best practices, and highlight common pitfalls.

Attendees will walk away with practical knowledge of lazy queries and streaming mode, ready to apply these tools in their daily work as data engineers or data scientists.

Understanding the effectiveness of various marketing channels is crucial to maximise the return on investment (ROI). However, the limitation of third-party cookies and an ever-growing focus on privacy make it difficult to rely on basic analytics. This talk discusses a pioneering project where a Bayesian model was employed to assess the marketing media mix effectiveness of WeRoad, the fastest-growing Italian tour operator.

The Bayesian approach allows for the incorporation of prior knowledge, seamlessly updating it with new data to provide robust, actionable insights. This project leveraged a Bayesian model to unravel the complex interactions between marketing channels such as online ads, social media, and promotions. We'll dive deep into how the Bayesian model was designed, discussing how we provided the AI system with expert knowledge, and presenting how delays and saturation were modelled.

We will also tackle aspects of the technical implementation, discussing how Python, PyMC, and Streamlit provided us with the all the tools we needed to develop an effective, efficient, and user-friendly system.

Attendees will walk away with:

  • A simple understanding of the Bayesian approach and why it matters.
  • Concrete examples of the transformative impact on WeRoad's marketing strategy.
  • A blueprint to harness predictive models in their business strategies.