Dive into the intricacies of data science with 'Principles of Data Science'. This book takes you on a journey to explore, analyze, and transform data into actionable insights using mathematical models, Python programming, and machine learning concepts. With a clear and engaging style, you will progress from understanding theoretical foundations to implementing advanced techniques in real-world scenarios. What this Book will help me do Master the five critical steps in a practical data science workflow. Clean and prepare raw datasets for accurate machine learning models. Understand and apply statistical models and mathematical principles for data analysis. Build and evaluate predictive models using Python and effective metrics. Create impactful visualizations that clearly convey data insights. Author(s) Sinan Ozdemir is an expert in data science, with a background in developing and teaching advanced courses in machine learning and predictive analytics. With co-authors None Kakade and None Tibaldeschi, they bring years of hands-on experience in data science to this comprehensive guide. Their approach simplifies complex concepts, making them accessible without sacrificing depth, to empower readers to make data-driven decisions confidently. Who is it for? This book is ideal for aspiring data scientists seeking a practical introduction to the field. It's perfect for those with basic math skills looking to apply them to data science or experienced programmers who want to explore the mathematical foundation of data science. A basic understanding of Python programming will be invaluable, but the book builds up core concepts step-by-step, making it accessible to both beginners and experienced professionals.