talk-data.com talk-data.com

A

Speaker

Andreas François Vermeulen

2

talks

author

Filter by Event / Source

Talks & appearances

2 activities · Newest first

Search activities →
Practical Data Science: A Guide to Building the Technology Stack for Turning Data Lakes into Business Assets

Learn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets. The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data scientist Andreas Vermeulen demonstrates in detail how to build and provision a technology stack to yield repeatable results. He shows you how to apply practical methods to extract actionable business knowledge from data lakes consisting of data from a polyglot of data types and dimensions. What You'll Learn Become fluent in the essential concepts and terminology of data science and data engineering Build and use a technology stack that meets industry criteria Master the methods for retrieving actionable business knowledge Coordinate the handling ofpolyglot data types in a data lake for repeatable results Who This Book Is For Data scientists and data engineers who are required to convert data from a data lake into actionable knowledge for their business, and students who aspire to be data scientists and data engineers

Practical Hive: A Guide to Hadoop's Data Warehouse System

Dive into the world of SQL on Hadoop and get the most out of your Hive data warehouses. This book is your go-to resource for using Hive: authors Scott Shaw, Ankur Gupta, David Kjerrumgaard, and Andreas Francois Vermeulen take you through learning HiveQL, the SQL-like language specific to Hive, to analyze, export, and massage the data stored across your Hadoop environment. From deploying Hive on your hardware or virtual machine and setting up its initial configuration to learning how Hive interacts with Hadoop, MapReduce, Tez and other big data technologies, Practical Hive gives you a detailed treatment of the software. In addition, this book discusses the value of open source software, Hive performance tuning, and how to leverage semi-structured and unstructured data. What You Will Learn Install and configure Hive for new and existing datasets Perform DDL operations Execute efficient DML operations Use tables, partitions, buckets, and user-defined functions Discover performance tuning tips and Hive best practices Who This Book Is For Developers, companies, and professionals who deal with large amounts of data and could use software that can efficiently manage large volumes of input. It is assumed that readers have the ability to work with SQL.