Join us for an interactive Ask Me Anything (AMA) session on the latest advancements in Apache Spark 4, including Spark Connect — the new client-server architecture enabling seamless integration with IDEs, notebooks and custom applications. Learn about performance improvements, enhanced APIs and best practices for leveraging Spark’s next-generation features. Whether you're a data engineer, Spark developer or big data enthusiast, bring your questions on architecture, real-world use cases and how these innovations can optimize your workflows. Don’t miss this chance to dive deep into the future of distributed computing with Spark!
talk-data.com
Speaker
Allison Wang
2
talks
Allison is a software engineer at Databricks, working on Spark SQL and PySpark. She holds a Bachelor’s degree in Computer Science from Carnegie Mellon University.
Bio from: Databricks DATA + AI Summit 2023
Filter by Event / Source
Talks & appearances
Showing 2 of 4 activities
PySpark has long been a cornerstone of big data processing, excelling in data preparation, analytics and machine learning tasks within traditional data lakes. However, the rise of multimodal AI and vector search introduces challenges beyond its capabilities. Spark’s new Python data source API enables integration with emerging AI data lakes built on the multi-modal Lance format. Lance delivers unparalleled value with its zero-copy schema evolution capability and robust support for large record-size data (e.g., images, tensors, embeddings, etc), simplifying multimodal data storage. Its advanced indexing for semantic and full-text search, combined with rapid random access, enables high-performance AI data analytics to the level of SQL. By unifying PySpark's robust processing capabilities with Lance's AI-optimized storage, data engineers and scientists can efficiently manage and analyze the diverse data types required for cutting-edge AI applications within a familiar big data framework.