talk-data.com talk-data.com

Topic

Lance

file_format vector_db embeddings open_table_format data_lake

4

tagged

Activity Trend

3 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Chang She ×

In this episode, Tristan Handy sits down with Chang She — a co-creator of Pandas and now CEO of LanceDB — to explore the convergence of analytics and AI engineering. The team at LanceDB is rebuilding the data lake from the ground up with AI as a first principle, starting with a new AI-native file format called Lance. Tristan traces Chang's journey as one of the original contributors to the pandas library to building a new infrastructure layer for AI-native data. Learn why vector databases alone aren't enough, why agents require new architecture, and how LanceDB is building a AI lakehouse for the future. For full show notes and to read 6+ years of back issues of the podcast's companion newsletter, head to https://roundup.getdbt.com. The Analytics Engineering Podcast is sponsored by dbt Labs.

AI-Ready Data in Action: Powering Smarter Agents

This hands-on workshop focuses on what AI engineers do most often: making data AI-ready and turning it into production-useful applications. Together with dltHub and LanceDB, you’ll walk through an end-to-end workflow: collecting and preparing real-world data with best practices, managing it in LanceDB, and powering AI applications with search, filters, hybrid retrieval, and lightweight agents. By the end, you’ll know how to move from raw data to functional, production-ready AI setups without the usual friction. We will touch upon multi-modal data and going to production with this end-to-end use case.

LanceDB: A Complete Search and Analytical Store for Serving Production-scale AI Applications

If you're building AI applications, chances are you're solving a retrieval problem somewhere along the way. This is why vector databases are popular today. But if we zoom out from just vector search, serving AI applications also requires handling KV workloads like a traditional feature store, as well as analytical workloads to explore and visualize data. This means that building an AI application often requires multiple data stores, which means multiple data copies, manual syncing, and extra infrastructure expenses. LanceDB is the first and only system that supports all of these workloads in one system. Powered by Lance columnar format, LanceDB completely breaks open the impossible triangle of performance, scalability, and cost for AI serving. Serving AI applications is different from previous waves of technology, and a new paradigm demands new tools.