talk-data.com talk-data.com

Event

Airflow Summit 2024

2024-07-01 Airflow Summit Visit website ↗

Activities tracked

8

Airflow Summit 2024 program

Filtering by: Analytics ×

Sessions & talks

Showing 1–8 of 8 · Newest first

Search within this event →

A Game of Constant Learning & Adjustment: Orchestrating ML Pipelines at the Philadelphia Phillies

2024-07-01
session

When developing Machine Learning (ML) models, the biggest challenges are often infrastructural. How do we deploy our model and expose an inference API? How can we retrain? Can we continuously evaluate performance and monitor model drift? In this talk, we will present how we are tackling these problems at the Philadelphia Phillies by developing a suite of tools that enable our software engineering and analytics teams to train, test, evaluate, and deploy ML models - that can be entirely orchestrated in Airflow. This framework abstracts away the infrastructural complexities that productionizing ML Pipelines presents and allows our analysts to focus on developing robust baseball research for baseball operations stakeholders across player evaluation, acquisition, and development. We’ll also look at how we use Airflow, MLflow, MLServer, cloud services, and GitHub Actions to architect a platform that supports our framework for all points of the ML Lifecycle.

Airflow as a workflow for Self Service Based Ingestion

2024-07-01
session

Our Idea to platformize Ingestion pipelines is driven via Airflow in the background and streamline the entire ingestion process for Self Service. With customer experience on top of it and making data ingestion fool proof as part of Analytics data team, Airflow is just complementing for our vision.

Airflow at NCR Voyix: Streamlining ML workflows development with Airflow

2024-07-01
session

NCR Voyix Retail Analytics AI team offers ML products for retailers while embracing Airflow as its MLOps Platform. As the team is small and there have been twice as many data scientists as engineers, we encountered challenges in making Airflow accessible to the scientists: As they come from diverse programming backgrounds, we needed an architecture enabling them to develop production-ready ML workflows without prior knowledge of Airflow. Due to dynamic product demands, we had to implement a mechanism to interchange Airflow operators effortlessly. As workflows serve multiple customers, they should be easily configurable and simultaneously deployable. We came up with the following architecture to deal with the above: Enabling our data scientists to formulate ML workflows as structured Python files. Seamlessly converting the workflows into Airflow DAGs while aggregating their steps to be executed on different Airflow operators. Deploying DAGs via CI/CD’s UI to the DAGs folder for all customers while considering definitions for each in their configuration files. In this session, we will cover Airflow’s evolution in our team and review the concepts of our architecture.

Boost Airflow Monitoring and Alerting with Automation Analytics & Intelligence by Broadcom

2024-07-01
session

This talk is presented by Broadcom. Airflow’s “workflow as code” approach has many benefits, including enabling dynamic pipeline generation and flexibility and extensibility in a seamless development environment. However, what challenges do you face as you expand your Airflow footprint in your organization? What if you could enhance Airflow’s monitoring capabilities, forecast DAG and task executions, obtain predictive alerting, visualize trends, and get more robust logging? Broadcom’s Automation Analytics & Intelligence (AAI) offers advanced analytics for workload automation for cloud and on-premises automation. It connects easily with Airflow to offer improved visibility into dependencies between tasks in Airflow DAGs along with the workload’s critical path, dynamic SLA management, and more. Join our presentation to hear more about how AAI can help you improve service delivery. We will also lead a workshop that will allow you to dive deeper into how easy it is to install our Airflow Connector and get started visualizing your Airflow DAGs to optimize your workload and identify issues before they impact your business.

Building Reliable Data Products

2024-07-01
session

Data engineers have shifted from delivering data for internal analytics applications to customer-facing data products. And with that shift comes a whole new level of operational rigor necessary to instill trust and confidence in the data. How do you hold data pipelines to the same standards as traditional software applications? Can you apply principles learned from the field of SRE to the world of data? In this talk, we’ll explore how we’ve seen this evolve in Astronomer’s customer base and highlight best practices learned from the most critical data product applications we’ve seen. We’ll hear from Astronomer’s own data team as they went through the transformation from analytics to data products. And we’ll showcase a new product we’re building to help data teams around the world solve exactly this problem!

How Panasonic Leverages Airflow

2024-07-01
session

Using various operators to perform daily routines. Integration with Technologies: Redis: Acts as a caching mechanism to optimize data retrieval and processing speed, enhancing overall pipeline performance. MySQL: Utilized for storing metadata and managing task state information within Airflow’s backend database. Tableau: Integrates with Airflow to generate interactive visualizations and dashboards, providing valuable insights into the processed data. Amazon Redshift: Panasonic leverages Redshift for scalable data warehousing, seamlessly integrating it with Airflow for data loading and analytics. Foundry: Integrated with Airflow to access and process data stored within Foundry’s data platform, ensuring data consistency and reliability. Plotly Dashboards: Employed for creating custom, interactive web-based dashboards to visualize and analyze data processed through Airflow pipelines. GitLab CI/CD Pipelines: Utilized for version control and continuous integration/continuous deployment (CI/CD) of Airflow DAGs (Directed Acyclic Graphs), ensuring efficient development and deployment of workflows.

Lessons from the Ecosystem: What can Airflow Learn from Other Open-source Communities?

2024-07-01
session

The Apache Airflow community is so large and active that it’s tempting to take the view that “if it ain’t broke don’t fix it.” In a community as in a codebase, however, improvement and attention are essential to sustaining growth. And bugs are just as inevitable in community management as they are in software development. If only the fixes were, too! Airflow is large and growing because users love Airflow and our community. But what steps could be taken to enhance the typical user’s and developer’s experience of the community? This talk will provide an overview of potential learnings for Airflow community management efforts, such as project governance and analytics, derived from the speaker’s experience managing the OpenLineage and Marquez open-source communities. The talk will answer questions such as: What can we learn from other open-source communities when it comes to supporting users and developers and learning from them? For example, what options exist for getting historical data out of Slack despite the limitations of the free tier? What tools can be used to make adoption metrics more reliable? What are some effective supplements to asynchronous governance?

Optimizing Critical Operations: Enhancing Robinhood's Workflow Journey with Airflow

2024-07-01
session

Airflow is widely used within Robinhood. In addition to traditional offline analytics use cases (to schedule ingestion and analytics workloads that populate our data lake), we also use Airflow in our backend services to orchestrate various workflows that are highly critical for the business, e.g: compliance and regulatory reporting, user facing reports and more. As part of this, we have evolved what we believe is a unique deployment architecture for Airflow. We have central schedulers that are responsible for workloads from multiple different teams, but the workflow tasks themselves run on workers owned by respective teams that are highly coupled with their backend services and codebase. Furthermore, Robinhood augmented Airflow with a bunch of customizations — airflow worker template for Kubernetes, enhanced observability, enhanced SLA detection, and a collection of operators, sensors, and plugins to tailor Airflow to their exact needs. This session is going to walk through how we grew our architecture and adapted Airflow to fit Robinhood’s variety of needs and use cases.