talk-data.com talk-data.com

S

Speaker

Shannon Cutt

2

talks

author

Filter by Event / Source

Talks & appearances

2 activities · Newest first

Search activities →
Getting Data Right

Over the last 20 years, companies have invested roughly $3-4 trillion in enterprise software. These investments have been primarily focused on the development and deployment of single systems, applications, functions, and geographies targeted at the automation and optimization of key business processes. Companies are now investing heavily in big data analytics ($44 billion alone in 2014) in an effort to begin analyzing all of the data being generated from their process automation systems. But companies are quickly realizing that one of their key bottlenecks is Data Variety—the silo’d nature of the data that is a natural result of internal and external source proliferation. The problem of big data variety has crept up from the bottom—and the cost of variety is only appreciated when companies attempt to ask simple questions across many business silos (divisions, geographies, functions, etc.). Current top-down, deterministic data unification approaches (such as ETL, ELT, and MDM) were simply not designed to scale to the variety of hundreds or thousands or even tens of thousands of data silos. Download this free eBook to learn about the fundamental challenges that Data Variety poses to enterprises looking to maximize the value of their existing investments—and how new approaches promise to help organizations embrace and leverage the fundamental diversity of data. Readers will also find best practices for designing bottom-up and probabilistic methods for finding and managing data; principles for doing data science at scale in the big data era; preparing and unifying data in ways that complement existing systems; optimizing data warehousing; and how to use “data ops” to automate large-scale integration.

Women in Data

Our new 2015 Edition of O'Reilly's Women in Data report reveals inspiring stories of success and insights from four women working in data, across the European Union. Now featuring a total of 19 interviews with women who are central to data businesses, authors Cornelia Lévy-Bencheton and Shannon Cutt uncover strategies for success for women in the field of data, and anyone interested in pursuing or advancing their career in data. While women are still an underrepresented minority in the disciplines of science, technology, engineering, and math (STEM), women in data and technology are no longer outliers. With this report, you'll learn how a remarkable group of women in data achieved their current level of success, what motivated them to get there, and their views about opportunities for women in the field. The stories in this book are inspiring, revealing insights that will widen the path for even more women in tech. These interviews explore: The expanding role of the contemporary data scientist New attitudes towards women in data among Millennials Benefits of the data and STEM fields as a career choice for women Remedies for closing the gender gap