talk-data.com talk-data.com

A

Speaker

Alexey

3

talks

host

Filter by Event / Source

Talks & appearances

3 activities · Newest first

Search activities →

In this talk, Anusha Akkina, co-founder of Auralytix, shares her journey from working as a Chartered Accountant and Auditor at Deloitte to building an AI-powered finance intelligence platform designed to augment, not replace, human decision-making. Together with host Alexey from DataTalks.Club, she explores how AI is transforming finance operations beyond spreadsheets—from tackling ERP limitations to creating real-time insights that drive strategic business outcomes.

TIMECODES: 00:00 Building trust in AI finance and introducing Auralytix 02:22 From accounting roots to auditing at Deloitte and Paraxel 08:20 Moving to Germany and pivoting into corporate finance 11:50 The data struggle in strategic finance and the need for change 13:23 How Auralytix was born: bridging AI and financial compliance 17:15 Why ERP systems fail finance teams and how spreadsheets fill the gap 24:31 The real cost of ERP rigidity and lessons from failed transformations 29:10 The hidden risks of spreadsheet dependency and knowledge loss 37:30 Experimenting with ChatGPT and coding the first AI finance prototype 43:34 Identifying finance’s biggest pain points through user research 47:24 Empowering finance teams with AI-driven, real-time decision insights 50:59 Developing an entrepreneurial mindset through strategy and learning 54:31 Essential resources and finding the right AI co-founder

Connect with Anusha - Linkedin - https://www.linkedin.com/in/anusha-akkina-acma-cgma-56154547/ - Website - https://aurelytix.com/

Connect with DataTalks.Club: - Join the community - https://datatalks.club/slack.html - Subscribe to our Google calendar to have all our events in your calendar - https://calendar.google.com/calendar/r?cid=ZjhxaWRqbnEwamhzY3A4ODA5azFlZ2hzNjBAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ - Check other upcoming events - https://lu.ma/dtc-events - GitHub: https://github.com/DataTalksClub - LinkedIn - https://www.linkedin.com/company/datatalks-club/ - Twitter - https://twitter.com/DataTalksClub - Website - https://datatalks.club/

In this episode, we talk with Orell about his journey from electrical engineering to freelancing in data engineering. Exploring lessons from startup life, working with messy industrial data, the realities of freelancing, and how to stay up to date with new tools.

Topics covered: Why Orel left a PhD and a simulation‑focused start‑up after Covid hitWhat he learned trying (and failing) to commercialise medical‑imaging simulationsThe first freelance project and the long, quiet months that followedHow he now finds clients, keeps projects small and delivers value quicklyTypical work he does for industrial companies: parsing messy machine logs, building simple pipelines, adding structure laterFavorite everyday tools (Python, DuckDB, a bit of C++) and the habit of blocking time for learningAdvice for anyone thinking about freelancing: cash runway, networking, and focusing on problems rather than “perfect” tech choices A practical conversation for listeners who are curious about moving from research or permanent roles into freelance data engineering.

🕒 TIMECODES 0:00 Orel’s career and move to freelancing 9:04 Startup experience and data engineering lessons 16:05 Academia vs. startups and starting freelancing 25:33 Early freelancing challenges and networking 34:22 Freelance data engineering and messy industrial data 43:27 Staying practical, learning tools, and growth 50:33 Freelancing challenges and client acquisition 58:37 Tools, problem-solving, and manual work

🔗 CONNECT WITH ORELL Twitter - https://bsky.app/profile/orgarten.bsk... LinkedIn - / ogarten
Github - https://github.com/orgarten Website - https://orellgarten.com

🔗 CONNECT WITH DataTalksClub Join the community - https://datatalks.club/slack.html Subscribe to our Google calendar to have all our events in your calendar - https://calendar.google.com/calendar/... Check other upcoming events - https://lu.ma/dtc-events GitHub: https://github.com/DataTalksClub LinkedIn - / datatalks-club
Twitter - / datatalksclub
Website - https://datatalks.club/

🔗 CONNECT WITH ALEXEY Connect with Alexey Twitter - / al_grigor
Linkedin - / agrigorev

We talked about:

Olga’s career journey Hiring data scientists now vs 7 years ago The two qualities of an excellent data scientist What makes Alexey do this podcast How Alexey get the latest information on data science How Olga checks a candidate’s technical skills How to make an answer stand out (showing your depth of knowledge) A strong mathematical background vs a strong engineering background When Auto ML will replace the need to have data scientists Should data scientists transition into management? (the importance of communication in an organization) Switching from a data analyst role to a data scientist Attracting female talent in data science Changing a job description to find talent Long gaps in the CV Eierlegende Wollmilchsau

Links:

Olga's LinkedIn: https://www.linkedin.com/in/olgaivina/  Olga's Twitter: https://twitter.com/olgaivina

MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html