talk-data.com talk-data.com

P

Speaker

Paco Nathan

4

talks

guest

Frequent Collaborators

Filter by Event / Source

Talks & appearances

4 activities · Newest first

Search activities →

Paco Nathan is a national treasure. He's not only an OG in the field of AI, but he's also instrumental in early hacker and cyberpunk culture.

When I first met Paco, it suddenly clicked that I'd seen his name in various cyberpunk and alternative zines back in the 1990s. We have a chat all sorts of crazy stuff, and I feel like we only got to 5% of the stories..

Fifty Years of Data Management and Beyond

Every decade since the 1960s, researchers at companies like IBM, Amazon, and many others have introduced major new frameworks and techniques to handle rising data management problems. This concise ebook explains how these new systems helped data science evolve quickly—from hierarchical and relational databases to big data and cloud computing to streaming and graph data. Computer scientist Paco Nathan shows members of your data science team how major companies created each of these data management systems not just to deal with new data types but also to take full advantage of the opportunities the data presented. Their efforts over the years have propelled an entire industry. This report covers the historical progression of data management topics including: Hierarchical databases—1960s mainframe batch systems are still used in finance, healthcare, manufacturing, energy, and other industries. Relational databases—these enabled faster transactions, mathematical optimization, and budgeting guarantees for many businesses. Big data—this includes relatively cheap horizontal scale-out systems for collecting huge amounts of customer data. Cloud computing—large companies began managing reliable, scalable, cost-effective data centers; Amazon turned the concept into a business. Cluster schedulers—managing horizontal clusters was difficult before schedulers such as Apache Mesos appeared. Streaming data—data continuously generated by different sources requires responses in "real time"—generally milliseconds.

Enterprise Data Workflows with Cascading

There is an easier way to build Hadoop applications. With this hands-on book, you’ll learn how to use Cascading, the open source abstraction framework for Hadoop that lets you easily create and manage powerful enterprise-grade data processing applications—without having to learn the intricacies of MapReduce. Working with sample apps based on Java and other JVM languages, you’ll quickly learn Cascading’s streamlined approach to data processing, data filtering, and workflow optimization. This book demonstrates how this framework can help your business extract meaningful information from large amounts of distributed data. Start working on Cascading example projects right away Model and analyze unstructured data in any format, from any source Build and test applications with familiar constructs and reusable components Work with the Scalding and Cascalog Domain-Specific Languages Easily deploy applications to Hadoop, regardless of cluster location or data size Build workflows that integrate several big data frameworks and processes Explore common use cases for Cascading, including features and tools that support them Examine a case study that uses a dataset from the Open Data Initiative