talk-data.com talk-data.com

Tejas Manohar

Speaker

Tejas Manohar

9

talks

Co-CEO Hightouch

Tejas Manohar is the co-founder/co-CEO of Hightouch. Prior to founding Hightouch, Tejas was an early engineer at Segment, the leading company in the Customer Data Platform (CDP) space that was acquired by Twilio for $3.2B. At Segment, Tejas realized that many of the challenges of building a best-in-class CDP would be better solved on top of the data warehouse and a modern data stack and hence, he founded Hightouch. When Tejas isn’t thinking about data, he likes running and playing competitive table tennis.

Bio from: dbt Coalesce 2022

Frequent Collaborators

Filter by Event / Source

Talks & appearances

9 activities · Newest first

Search activities →
Sponsored by: Hightouch | Unleashing AI at PetSmart: Using AI Decisioning Agents to Drive Revenue

With 75M+ Treats Rewards members, PetSmart knows how to build loyalty with pet parents. But recently, traditional email testing and personalization strategies weren’t delivering the engagement and growth they wanted—especially in the Salon business. This year, they replaced their email calendar and A/B testing with AI Decisioning, achieving a +22% incremental lift in bookings. Join Bradley Breuer, VP of Marketing – Loyalty, Personalization, CRM, and Customer Analytics, to learn how his team reimagined CRM using AI to personalize campaigns and dynamically optimize creative, offers, and timing for every unique pet parent. Learn: How PetSmart blends human insight and creativity with AI to deliver campaigns that engage and convert. How they moved beyond batch-and-blast calendars with AI Decisioning Agents to optimize sends—while keeping control over brand, messaging, and frequency. How using Databricks as their source of truth led to surprising learnings and better outcomes.

Accor, a world-leading hospitality group offering experiences across more than 110 countries in 5,500 properties, 10,000 food & beverage venues, wellness facilities or flexible workspaces, relies on its more than 45 hotel brands from luxury to economy and its most awarded traveler loyalty program to connect deeply with customers and increase their lifetime value. With a rich store of data centralized in Snowflake, the team set out to enable their marketing and business teams with a platform that would allow them to autonomously deliver hyper-personalized experiences and campaigns.

Join the session to learn about Accor’s CDP journey and how Hightouch, as their Composable CDP, helps them drive customer engagement, loyalty, and revenue.

Cost centers to cash cows: Data teams as growth drivers - Coalesce 2023

Hear from Red Ventures about how through the creation of standard implementation playbooks, their data team is able to quickly roll out modern tools like dbt and Hightouch across businesses to drive growth.

Speakers: Tejas Manohar, cofounder/co-CEO, Hightouch; Brandon Beidel, Director of Data Engineering, Red Ventures

Register for Coalesce at https://coalesce.getdbt.com

Many large organisations have the data to pull off sophisticated marketing strategies, but only if they avoid the common pitfalls that limit the potential. In this episode I interview Tejas Manohar on the huge – and typically unexploited – potential for data-driven marketing and personalisation. Tejas is co-founder and co-CEO of Hightouch. Hightouch is a reverse ETL platform that helps organisations synch their data warehouses with business facing tools and technology. Their products are used by big name corporations like Warner Music, Chime, Spotify, NBA, and PetSmart. In this wide-ranging conversation Tejas and I discuss: What a reverse ETL platform is and why we need itWhy Tejas is bullish on turning data warehouses into marketing enginesThe key steps marketers should take to implement personalization effectively using existing company data and platformsThe pitfalls and common mistakes businesses make in data-driven personalisation and how to avoid these, and much more.Tejas on LinkedIn: https://www.linkedin.com/in/tejasmanohar/ Tejas on Twitter (or is it X?): https://twitter.com/tejasmanohar

Summary

The customer data platform is a category of services that was developed early in the evolution of the current era of cloud services for data processing. When it was difficult to wire together the event collection, data modeling, reporting, and activation it made sense to buy monolithic products that handled every stage of the customer data lifecycle. Now that the data warehouse has taken center stage a new approach of composable customer data platforms is emerging. In this episode Darren Haken is joined by Tejas Manohar to discuss how Autotrader UK is addressing their customer data needs by building on top of their existing data stack.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their extensive library of integrations enable you to automatically send data to hundreds of downstream tools. Sign up free at dataengineeringpodcast.com/rudderstack Your host is Tobias Macey and today I'm interviewing Darren Haken and Tejas Manohar about building a composable CDP and how you can start adopting it incrementally

Interview

Introduction How did you get involved in the area of data management? Can you describe what you mean by a "composable CDP"?

What are some of the key ways that it differs from the ways that we think of a CDP today?

What are the problems that you were focused on addressing at Autotrader that are solved by a CDP? One of the promises of the first generation CDP was an opinionated way to model your data so that non-technical teams could own this responsibility. What do you see as the risks/tradeoffs of moving CDP functionality into the same data stack as the rest of the organization?

What about companies that don't have the capacity to run a full data infrastructure?

Beyond the core technology of the data warehouse, what are the other evolutions/innovations that allow for a CDP experience to be built on top of the core data stack? added burden on core data teams to generate event-driven data models When iterating toward a CDP on top of the core investment of the infrastructure to feed and manage a data warehouse, what are the typical first steps?

What are some of the components in the ecosystem that help to speed up the time to adoption? (e.g. pre-built dbt packages for common transformations, etc.)

What are the most interesting, innovative, or unexpected ways that you have seen CDPs implemented? What are the most interesting, unexpected, or challenging lessons that you have learned while working on CDP related functionality? When is a CDP (composable or monolithic) the wrong choice? What do you have planned for the future of the CDP stack?

Contact Info

Darren

LinkedIn @DarrenHaken on Twitter

Tejas

LinkedIn @tejasmanohar on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers

Links

Autotrader Hightouch

Customer Studio

CDP == Customer Data Platform Segment

Podcast Episode

mPar

Data Apps in the Real World: How to Capture Value Locked in the Data Warehouse

Should you consider building a Data App?

How many times has your product team asked for data science models to be available in realtime to serve feature flags and product recommendations to customers? They don’t, but they should, and with data apps the data team can make this a reality.

Join TJ Murphy of Multi Media LLC, Kevin Chao from Ramp, and Tejas Manohar from Hightouch to hear examples of data apps in the real world. Their aim is to give data practitioners a framework for when and why to use the warehouse for production applications, and why the data team is the right team for this undertaking.

TJ will walk through the data apps he built at Minted, including a user personalization service and marketing automation tools. At Minted, the data team supported a GraphQL layer on top of the warehouse that supported both web and mobile app personalization on a per user basis.

Kevin Chao will share how Ramp, a fintech leader valued at $8B, is using dbt and Hightouch to power compliance via Snowflake as the source of truth.

Tejas will share how Supr Daily, the Instacart of India, runs product recommendations in their mobile app and automatically sends push notifications at opportune moments to convert users at a higher rate.

Lastly, TJ will give a practical overview of architecture, and a checklist of what to think through before building a Data App.

Check the slides here: https://docs.google.com/presentation/d/1LMuuuvVy3QD2ZAltp5c1Eh5Ik4LgM0q-AMlThsZVR40/edit#slide=id.g166573b6b47_0_0

Coalesce 2023 is coming! Register for free at https://coalesce.getdbt.com/.

Summary The precursor to widespread adoption of cloud data warehouses was the creation of customer data platforms. Acting as a centralized repository of information about how your customers interact with your organization they drove a wave of analytics about how to improve products based on actual usage data. A natural outgrowth of that capability is the more recent growth of reverse ETL systems that use those analytics to feed back into the operational systems used to engage with the customer. In this episode Tejas Manohar and Rachel Bradley-Haas share the story of their own careers and experiences coinciding with these trends. They also discuss the current state of the market for these technological patterns and how to take advantage of them in your own work.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Go to dataengineeringpodcast.com/montecarlo and start trusting your data with Monte Carlo today! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Rachel Bradley-Haas and Tejas Manohar about the combination of operational analytics and the customer data platform

Interview

Introduction How did you get involved in the area of data management? Can we start by discussing what it means to have a "customer data platform"? What are the challenges that organizations face in establishing a unified view of their customer interactions?

How do the presence of multiple product lines impact the ability to understand the relationship with the customer?

We have been building data warehouses and business intelligence systems for decades. How does the idea of a CDP differ from the approaches of those previous generations? A recent outgrowth of the focus on creating a CDP is the introduction of "operational analytics", which was initially termed "reverse ETL". What are your opinions on the semantics and importance of these names?

What is the relationship between a CDP and operational analytics? (can you have one without the other?)

How have the capabilities

Summary The data warehouse has become the central component of the modern data stack. Building on this pattern, the team at Hightouch have created a platform that synchronizes information about your customers out to third party systems for use by marketing and sales teams. In this episode Tejas Manohar explains the benefits of sourcing customer data from one location for all of your organization to use, the technical challenges of synchronizing the data to external systems with varying APIs, and the workflow for enabling self-service access to your customer data by your marketing teams. This is an interesting conversation about the importance of the data warehouse and how it can be used beyond just internal analytics.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. This episode of Data Engineering Podcast is sponsored by Datadog, a unified monitoring and analytics platform built for developers, IT operations teams, and businesses in the cloud age. Datadog provides customizable dashboards, log management, and machine-learning-based alerts in one fully-integrated platform so you can seamlessly navigate, pinpoint, and resolve performance issues in context. Monitor all your databases, cloud services, containers, and serverless functions in one place with Datadog’s 400+ vendor-backed integrations. If an outage occurs, Datadog provides seamless navigation between your logs, infrastructure metrics, and application traces in just a few clicks to minimize downtime. Try it yourself today by starting a free 14-day trial and receive a Datadog t-shirt after installing the agent. Go to dataengineeringpodcast.com/datadog today to see how you can enhance visibility into your stack with Datadog. Your host is Tobias Macey and today I’m interviewing Tejas Manohar about Hightouch, a data platform that helps you sync your customer data from your data warehouse to your CRM, marketing, and support tools

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of what you are building at Hightouch and your motivation for creating it? What are the main points of friction for teams who are trying to make use of customer data? Where is Hightouch positioned in the ecosystem of customer data tools such as Segment, Mixpanel