talk-data.com talk-data.com

Topic

data-science-as-a-profession

23

tagged

Activity Trend

1 peak/qtr
2020-Q1 2026-Q1

Activities

23 activities · Newest first

2013 Data Science Salary Survey

What tools do successful data scientists and analysts use, and how much money do they make? We surveyed hundreds of attendees at the O'Reilly Strata Conferences in Santa Clara, California and New York to understand. Findings from the survey include: Average number of tools and median income for all respondents Distribution of responses by age, location, industry, and position Detailed analysis of tools used by respondents and correlation to their salaries - including by tool clusters (Hadoop, SQL/Excel, and other) Correlation of specialized big data tools usage and salary What tools should you be learning and using? Read this valuable report to gain insight from these potentially career-changing findings.

On Being a Data Skeptic

"Data is here, it's growing, and it's powerful." Author Cathy O'Neil argues that the right approach to data is skeptical, not cynical––it understands that, while powerful, data science tools often fail. Data is nuanced, and "a really excellent skeptic puts the term 'science' into 'data science.'" The big data revolution shouldn't be dismissed as hype, but current data science tools and models shouldn't be hailed as the end-all-be-all, either.

Analyzing the Analyzers

Despite the excitement around "data science," "big data," and "analytics," the ambiguity of these terms has led to poor communication between data scientists and organizations seeking their help. In this report, authors Harlan Harris, Sean Murphy, and Marck Vaisman examine their survey of several hundred data science practitioners in mid-2012, when they asked respondents how they viewed their skills, careers, and experiences with prospective employers. The results are striking. Based on the survey data, the authors found that data scientists today can be clustered into four subgroups, each with a different mix of skillsets. Their purpose is to identify a new, more precise vocabulary for data science roles, teams, and career paths. This report describes: Four data scientist clusters: Data Businesspeople, Data Creatives, Data Developers, and Data Researchers Cases in miscommunication between data scientists and organizations looking to hire Why "T-shaped" data scientists have an advantage in breadth and depth of skills How organizations can apply the survey results to identify, train, integrate, team up, and promote data scientists