talk-data.com talk-data.com

Topic

Trino

Apache Trino

query_engine big_data analytics

2

tagged

Activity Trend

14 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Data + AI Summit 2025 ×
Extending the Lakehouse: Power Interoperable Compute With Unity Catalog Open APIs

The lakehouse is built for storage flexibility, but what about compute? In this session, we’ll explore how Unity Catalog enables you to connect and govern multiple compute engines across your data ecosystem. With open APIs and support for the Iceberg REST Catalog, UC lets you extend access to engines like Trino, DuckDB, and Flink while maintaining centralized security, lineage, and interoperability. We will show how you can get started today working with engines like Apache Spark and Starburst to read and write to UC managed tables with some exciting demos. Learn how to bring flexibility to your compute layer—without compromising control.

Iceberg Table Format Adoption and Unified Metadata Catalog Implementation in Lakehouse Platform

DoorDash Data organization actively adopts LakeHouse paradigm. This presentation describes the methodology which allows to migrate the classic Data Warehouse and Data Lake platforms to unified LakeHouse solution.The objective of this effort include Elimination of excessive data movement.Seamless integration and consolidation of the query engine layers, including Snowflake, Databricks, EMR and Trino.Query performance optimization.Abstracting away complexity of underlying storage layers and table formatsStrategic and justified decision on the Unified Metadata catalog used across varios compute platforms