talk-data.com talk-data.com

Event

Experiencing Data w/ Brian T. O’Neill (AI & data product management leadership—powered by UX design)

2022-02-08 – 2025-11-27 Podcasts Visit website ↗

Activities tracked

5

Is the value of your enterprise analytics SAAS or AI product not obvious through it’s UI/UX? Got the data and ML models right...but user adoption of your dashboards and UI isn’t what you hoped it would be?

While it is easier than ever to create AI and analytics solutions from a technology perspective, do you find as a founder or product leader that getting users to use and buyers to buy seems harder than it should be?

If you lead an internal enterprise data team, have you heard that a ”data product” approach can help—but you’re concerned it’s all hype?

My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I share the stories of leaders who are leveraging product and UX design to make SAAS analytics, AI applications, and internal data products indispensable to their customers. After all, you can’t create business value with data if the humans in the loop can’t or won’t use your solutions.

Every 2 weeks, I release interviews with experts and impressive people I’ve met who are doing interesting work at the intersection of enterprise software product management, UX design, AI and analytics—work that you need to hear about and from whom I hope you can borrow strategies.

I also occasionally record solo episodes on applying UI/UX design strategies to data products—so you and your team can unlock financial value by making your users’ and customers’ lives better.

Hashtag: #ExperiencingData.

JOIN MY INSIGHTS LIST FOR 1-PAGE EPISODE SUMMARIES, TRANSCRIPTS, AND FREE UX STRATEGY TIPS https://designingforanalytics.com/ed

ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/

Filtering by: Cloud Computing ×

Sessions & talks

Showing 1–5 of 5 · Newest first

Search within this event →

181 - Lessons Learned Designing Orion, Gravity’s AI, AI Analyst Product with CEO Lucas Thelosen (former Head of Product @ Google Data & AI Cloud)

2025-10-28 Listen
podcast_episode

On today's Promoted Episode of Experiencing Data, I’m talking with Lucas Thelosen, CEO of Gravity and creator of Orion, an AI analyst transforming how data teams work. Lucas was head of PS for Looker, and eventually became Head of Product for Google’s Data and AI Cloud prior to starting his own data product company. We dig into how his team built Orion, the challenge of keeping AI accurate and trustworthy when doing analytical work, and how they’re thinking about the balance of human control with automation when their product acts as a force multiplier for human analysts.

In addition to talking about the product, we also talk about how Gravity arrived at specific enough use cases for this technology that a market would be willing to pay for, and how they’re thinking about pricing in today’s more “outcomes-based” environment. 

Incidentally, one thing I didn’t know when I first agreed to consider having Gravity and Lucas on my show was that Lucas has been a long-time proponent of data product management and operating with a product mindset. In this episode, he shares the “ah-hah” moment where things clicked for him around building data products in this manner. Lucas shares how pivotal this moment was for him, and how it helped accelerate his career from Looker to Google and now Gravity.

If you’re leading a data team, you’re a forward-thinking CDO, or you’re interested in commercializing your own analytics/AI product, my chat with Lucas should inspire you!  

Highlights/ Skip to:

Lucas’s breakthrough came when he embraced a data product management mindset (02:43) How Lucas thinks about Gravity as being the instrumentalists in an orchestra, conducted by the user (4:31) Finding product-market fit by solving for a common analytics pain point (8:11) Analytics product and dashboard adoption challenges: why dashboards die and thinking of analytics as changing the business gradually (22:25) What outcome-based pricing means for AI and analytics (32:08) The challenge of defining guardrails and ethics for AI-based analytics products [just in case somebody wants to “fudge the numbers”] (46:03) Lucas’ closing thoughts about what AI is unlocking for analysts and how to position your career for the future  (48:35)

Special Bonus for DPLC Community Members Are you a member of the Data Product Leadership Community? After our chat, I invited Lucas to come give a talk about his journey of moving from “data” to “product” and adopting a producty mindset for analytics and AI work. He was more than happy to oblige. Watch for this in late 2025/early 2026 on our monthly webinar and group discussion calendar.

Note: today’s episode is one of my rare Promoted Episodes. Please help support the show by visiting Gravity’s links below:

Quotes from Today’s Episode “The whole point of data and analytics is to help the business evolve. When your reports make people ask new questions, that’s a win. If the conversations today sound different than they did three months ago, it means you’ve done your job, you’ve helped move the business forward.” — Lucas 

“Accuracy is everything. The moment you lose trust, the business, the use case, it's all over. Earning that trust back takes a long time, so we made accuracy our number one design pillar from day one.” — Lucas 

“Language models have changed the game in terms of scale. Suddenly, we’re facing all these new kinds of problems, not just in AI, but in the old-school software sense too. Things like privacy, scalability, and figuring out who’s responsible.” — Brian

“Most people building analytics products have never been analysts, and that’s a huge disadvantage. If data doesn’t drive action, you’ve missed the mark. That’s why so many dashboards die quickly.” — Lucas

“Re: collecting feedback so you know if your UX is good: I generally agree that qualitative feedback is the best place to start, not analytics [on your analytics!] Especially in UX, analytics measure usage aspects of the product, not the subject human experience. Experience is a collection of feelings and perceptions about how something went.” — Brian

Links

Gravity: https://www.bygravity.com LinkedIn: https://www.linkedin.com/in/thelosen/ Email Lucas and team: [email protected]

178 - Designing Human-Friendly AI Tech in a World Moving Too Fast with Author and Speaker Kate O’Neill

2025-09-16 Listen
podcast_episode

In this episode, I sat down with tech humanist Kate O’Neill to explore how organizations can balance human-centered design in a time when everyone is racing to find ways to leverage AI in their businesses. Kate introduced her “Now–Next Continuum,” a framework that distinguishes digital transformation (catching up) from true innovation (looking ahead). We dug into real-world challenges and tensions of moving fast vs. creating impact with AI, how ethics fits into decision making, and the role of data in making informed decisions. 

Kate stressed the importance of organizations having clear purpose statements and values from the outset, proxy metrics she uses to gauge human-friendliness, and applying a “harms of action vs. harms of inaction” lens for ethical decisions. Her key point: human-centered approaches to AI and technology creation aren’t slow; they create intentional structures that speed up smart choices while avoiding costly missteps.

Highlights/ Skip to:

How Kate approaches discussions with executives about moving fast, but also moving in a human-centered way when building out AI solutions (1:03) Exploring the lack of technical backgrounds among many CEOs and how this shapes the way organizations make big decisions around technical solutions (3:58)  FOMO and the “Solution in Search of a Problem” problem in Data (5:18)  Why ongoing ethnographic research and direct exposure to users are essential for true innovation (11:21)  Balancing organizational purpose and human-centered tech decisions, and why a defined purpose must precede these decisions (18:09) How organizations can define, measure, operationalize, and act on ethical considerations in AI and data products (35:57) Risk management vs. strategic optimism: balancing risk reduction with embracing the art of the possible when building AI solutions (43:54)

Quotes from Today’s Episode "I think the ethics and the governance and all those kinds of discussions [about the implications of digital transformation] are all very big word - kind of jargon-y kinds of discussions - that are easy to think aren't important, but what they all tend to come down to is that alignment between what the business is trying to do and what the person on the other side of the business is trying to do." –Kate O’Neill

" I've often heard the term digital transformation used almost interchangeably with the term innovation. And I think that that's a grave disservice that we do to those two concepts because they're very different. Digital transformation, to me, seems as if it sits much more comfortably on the earlier side of the Now-Next Continuum. So, it's about moving the past to the present… Innovation is about standing in the present and looking to the future and thinking about the art of the possible, like you said. What could we do? What could we extract from this unstructured data (this mess of stuff that’s something new and different) that could actually move us into green space, into territory that no one’s doing yet? And those are two very different sets of questions. And in most organizations, they need to be happening simultaneously." –Kate O’Neill

"The reason I chose human-friendly [as a term] over human-centered partly because I wanted to be very honest about the goal and not fall back into, you know, jargony kinds of language that, you know, you and I and the folks listening probably all understand in a certain way, but the CEOs and the folks that I'm necessarily trying to get reading this book and make their decisions in a different way based on it." –Kate O’Neill

“We love coming up with new names for different things. Like whether something is “cloud,” or whether it’s like, you know, “SaaS,” or all these different terms that we’ve come up with over the years… After spending so long working in tech, it is kind of fun to laugh at it. But it’s nice that there’s a real earnestness [to it]. That’s sort of evergreen [laugh]. People are always trying to genuinely solve human problems, which is what I try to tap into these days, with the work that I do, is really trying to help businesses—business leaders, mostly, but a lot of those are non-tech leaders, and I think that’s where this really sticks is that you get a lot of people who have ascended into CEO or other C-suite roles who don’t come from a technology background.” 

–Kate O’Neill

"My feeling is that if you're not regularly doing ethnographic research and having a lot of exposure time directly to customers, you’re doomed. The people—the makers—have to be exposed to the users and stakeholders.  There has to be ongoing work in this space; it can't just be about defining project requirements and then disappearing. However, I don't see a lot of data teams and AI teams that have non-technical research going on where they're regularly spending time with end users or customers such that they could even imagine what the art of the possible could be.”

–Brian T. O’Neill

Links

KO Insights: https://www.koinsights.com/ LinkedIn for Kate O’Neill: https://www.linkedin.com/in/kateoneill/ Kate O’Neill Book: What Matters Next: A Leader's Guide to Making Human-Friendly Tech Decisions in a World That's Moving Too Fast

121 - How Sainsbury’s Head of Data Products for Analytics and ML Designs for User Adoption with Peter Everill

2023-07-11 Listen
podcast_episode
Brian T. O’Neill , Peter Everill (Sainsbury’s)

Today I’m chatting with Peter Everill, who is the Head of Data Products for Analytics and ML Designs at the UK grocery brand, Sainsbury’s. Peter is also a founding member of the Data Product Leadership Community. Peter shares insights on why his team spends so much time conducting discovery work with users, and how that leads to higher adoption and in turn, business value. Peter also gives us his in-depth definition of a data product, including the three components of a data product and the four types of data products he’s encountered. He also shares the 8-step product management methodology that his team uses to develop data products that truly deliver value to end users. Pete also shares the #1 resource he would invest in right now to make things better for his team and their work.

Highlights/ Skip to:

I introduce Peter, who I met through the Data Product Leadership Community (00:37) What the data team structure at Sainsbury’s looks like and how Peter wound up working there (01:54) Peter shares the 8-step product management methodology that has been developed by his team and where in that process he spends most of his time (04:54) How involved the users are in Peter’s process when it comes to developing data products (06:13) How Peter was able to ensure that enough time is taken on discovery throughout the design process (10:03) Who on Peter’s team is doing the core user research for product development (14:52) Peter shares the three things that he feels make data product teams successful (17:09) How Peter defines a data product, including the three components of a data product and the four types of data products (18:34) Peter and I discuss the importance of spending time in discovery (24:25) Peter explains why he measures reach and impact as metrics of success when looking at implementation (26:18) How Peter solves for the gap when handing off a product to the end users to implement and adopt (29:20) How Peter hires for data product management roles and what he looks for in a candidate (33:31) Peter talks about what roles or skills he’d be looking for if he was to add a new person to his team (37:26)

Quotes from Today’s Episode “I’m a big believer that the majority of analytics in its simplest form is improving business processes and decisions. A big part of our discovery work is that we align to business areas, business divisions, or business processes, and we spend time in that discovery space actually mapping the business process. What is the goal of this process? Ultimately, how does it support the P&L?” — Peter Everill (12:29)

“There’s three things that are successful for any organization that will make this work and make it stick. The first is defining what you mean by a data product. The second is the role of a data product manager in the organization and really being clear what it is that they do and what they don’t do. … And the third thing is their methodology, from discovery through to delivery. The more work you put upfront defining those and getting everyone trained and clear on that, I think the quicker you’ll get to an organization that’s really clear about what it’s delivering, how it delivers, and who does what.” – Peter Everill (17:31)

“The important way that data and analytics can help an organization firstly is, understanding how that organization is performing. And essentially, performance is how well processes and decisions within the organization are being executed, and the impact that has on the P&L.” – Peter Everill (20:24)

“The great majority of organizations don’t allocate that percentage [20-25%] of time to discovery; they are jumping straight into solution. And also, this is where organizations typically then actually just migrate what already exists from, maybe, legacy service into a shiny new cloud platform, which might be good from a defensive data strategy point of view, but doesn’t offer new net value—apart from speed, security and et cetera of the cloud. Ultimately, this is why analytics organizations aren’t generally delivering value to organizations.” – Peter Everill (25:37)

“The only time that value is delivered, is from a user taking action. So, the two metrics that we really focus on with all four data products [are] reach [and impact].” – Peter Everill (27:44)

“In terms of benefits realization, that is owned by the business unit. Because ultimately, you’re asking them to take the action. And if they do, it’s their part of the P&L that’s improving because they own the business, they own the performance. So, you really need to get them engaged on the release, and for them to have the superusers, the champions of the product, and be driving voice of the release just as much as the product team.” – Peter Everill (30:30)

On hiring DPMs: “Are [candidates] showing the aptitude, do they understand what the role is, rather than the experience? I think data and analytics and machine learning product management is a relatively new role. You can’t go on LinkedIn necessarily, and be exhausted with a number of candidates that have got years and years of data and analytics product management.” – Peter Everill (36:40)

Links LinkedIn: https://www.linkedin.com/in/petereverill/

108 - Google Cloud’s Bruno Aziza on What Makes a Good Customer-Obsessed Data Product Manager

2023-01-10 Listen
podcast_episode
Brian T. O’Neill , Bruno Aziza (Google Cloud)

Today I’m chatting with Bruno Aziza, Head of Data & Analytics at Google Cloud. Bruno leads a team of outbound product managers in charge of BigQuery, Dataproc, Dataflow and Looker and we dive deep on what Bruno looks for in terms of skills for these leaders. Bruno describes the three patterns of operational alignment he’s observed in data product management, as well as why he feels ownership and customer obsession are two of the most important qualities a good product manager can have. Bruno and I also dive into how to effectively abstract the core problem you’re solving, as well as how to determine whether a problem might be solved in a better way. 

Highlights / Skip to:

Bruno introduces himself and explains how he created his “CarCast” podcast (00:45) Bruno describes his role at Google, the product managers he leads, and the specific Google Cloud products in his portfolio (02:36) What Bruno feels are the most important attributes to look for in a good data product manager (03:59) Bruno details how a good product manager focuses on not only the core problem, but how the problem is currently solved and whether or not that’s acceptable (07:20) What effective abstracting the problem looks like in Bruno’s view and why he positions product management as a way to help users move forward in their career (12:38) Why Bruno sees extracting value from data as the number one pain point for data teams and their respective companies (17:55) Bruno gives his definition of a data product (21:42) The three patterns Bruno has observed of operational alignment when it comes to data product management (27:57) Bruno explains the best practices he’s seen for cross-team goal setting and problem-framing (35:30)

Quotes from Today’s Episode  

“What’s happening in the industry is really interesting. For people that are running data teams today and listening to us, the makeup of their teams is starting to look more like what we do [in] product management.” — Bruno Aziza (04:29)

“The problem is the problem, so focus on the problem, decompose the problem, look at the frictions that are acceptable, look at the frictions that are not acceptable, and look at how by assembling a solution, you can make it most seamless for the individual to go out and get the job done.” – Bruno Aziza (11:28)

“As a product manager, yes, we’re in the business of software, but in fact, I think you’re in the career management business. Your job is to make sure that whatever your customer’s job is that you’re making it so much easier that they, in fact, get so much more done, and by doing so they will get promoted, get the next job.” – Bruno Aziza (15:41)

“I think that is the task of any technology company, of any product manager that’s helping these technology companies: don’t be building a product that’s looking for a problem. Just start with the problem back and solution from that. Just make sure you understand the problem very well.” (19:52)

“If you’re a data product manager today, you look at your data estate and you ask yourself, ‘What am I building to save money? When am I building to make money?’ If you can do both, that’s absolutely awesome. And so, the data product is an asset that has been built repeatedly by a team and generates value out of data.” – Bruno Aziza (23:12)

“[Machine learning is] hard because multiple teams have to work together, right? You got your business analyst over here, you’ve got your data scientists over there, they’re not even the same team. And so, sometimes you’re struggling with just the human aspect of it.” (30:30)

“As a data leader, an IT leader, you got to think about those soft ways to accomplish the stuff that’s binary, that’s the hard [stuff], right? I always joke, the hard stuff is the soft stuff for people like us because we think about data, we think about logic, we think, ‘Okay if it makes sense, it will be implemented.’ For most of us, getting stuff done is through people. And people are emotional, how can you express the feeling of achieving that goal in emotional value?” – Bruno Aziza (37:36)

Links As referenced by Bruno, “Good Product Manager/Bad Product Manager”: https://a16z.com/2012/06/15/good-product-managerbad-product-manager/ LinkedIn: https://www.linkedin.com/in/brunoaziza/ Bruno’s Medium Article on Competing Against Luck by Clayton M. Christensen: https://brunoaziza.medium.com/competing-against-luck-3daeee1c45d4 The Data CarCast on YouTube:  https://www.youtube.com/playlist?list=PLRXGFo1urN648lrm8NOKXfrCHzvIHeYyw

099 - Don’t Boil the Ocean: How to Generate Business Value Early With Your Data Products with Jon Cooke, CTO of Dataception

2022-09-06 Listen
podcast_episode

Today I’m sitting down with Jon Cooke, founder and CTO of Dataception, to learn his definition of a data product and his views on generating business value with your data products. In our conversation, Jon explains his philosophy on data products and where design and UX fit in. We also review his conceptual model for data products (which he calls the data product pyramid), and discuss how together, these concepts allow teams to ship working solutions faster that actually produce value. 

Highlights/ Skip to:

Jon’s definition of a data product (1:19)  Brian explains how UX research and design planning can and should influence data architecture —so that last mile solutions are useful and usable (9:47) The four characteristics of a data product in Jon’s model (16:16) The idea of products having a lifecycle with direct business/customer interaction/feedback (17:15) Understanding Jon’s data product pyramid (19:30) The challenges when customers/users don’t know what they want from data product teams - and who should be doing the work to surface requirements (24:44) Mitigating risk and the importance of having management buy-in when adopting a product-driven approach (33:23) Does the data product pyramid account for UX? (35:02) What needs to change in an org model that produces data products that aren’t delivering good last mile UXs (39:20)

Quotes from Today’s Episode “A data product is something that specifically solves a business problem, a piece of analytics, data use case, a pipeline, datasets, dashboard, that type that solves a business use case, and has a customer, and as a product lifecycle to it.” - Jon (2:15)

“I’m a fan of any definition that includes some type of deployment and use by some human being. That’s the end of the cycle, because the idea of a product is a good that has been made, theoretically, for sale.” - Brian (5:50)

“We don’t build a lot of stuff around cloud anymore. We just don’t build it from scratch. It’s like, you know, we don’t generate our own electricity, we don’t mill our own flour. You know, the cloud—there’s a bunch of composable services, which I basically pull together to build my application, whatever it is. We need to apply that thinking all the way through the stack, fundamentally.” - Jon (13:06)

“It’s not a data science problem, it’s not a business problem, it’s not a technology problem, it’s not a data engineering problem, it’s an everyone problem. And I advocate small, multidisciplinary teams, which have a business value person in it, have an SME, have a data scientist, have a data architect, have a data engineer, as a small pod that goes in and answer those questions.” - Jon (26:28)

“The idea is that you’re actually building the data products, which are the back-end, but you’re actually then also doing UX alongside that, you know? You’re doing it in tandem.” - Jon (37:36)

“Feasibility is one of the legs of the stools. There has to be market need, and your market just may be the sales team, but there needs to be some promise of value there that this person is really responsible for at the end of the day, is this data product going to create value or not?” - Brian (42:35)

“The thing about data products is sometimes you don’t know how feasible it is until you actually look at the data…You’ve got to do what we call data archaeology. You got to go and find the data, you got to brush it off, and you’re looking at and go, ‘Is it complete?’” - Jon (44:02)

Links Referenced: Dataception Data Product Pyramid Email: [email protected] LinkedIn: https://www.linkedin.com/in/jon-cooke-096bb0/