Data quality and AI reliability are two sides of the same coin in today's technology landscape. Organizations rushing to implement AI solutions often discover that their underlying data infrastructure isn't prepared for these new demands. But what specific data quality controls are needed to support successful AI implementations? How do you monitor unstructured data that feeds into your AI systems? When hallucinations occur, is it really the model at fault, or is your data the true culprit? Understanding the relationship between data quality and AI performance is becoming essential knowledge for professionals looking to build trustworthy AI systems. Shane Murray is a seasoned data and analytics executive with extensive experience leading digital transformation and data strategy across global media and technology organizations. He currently serves as Senior Vice President of Digital Platform Analytics at Versant Media, where he oversees the development and optimization of analytics capabilities that drive audience engagement and business growth. In addition to his corporate leadership role, he is a founding member of InvestInData, an angel investor collective of data leaders supporting early-stage startups advancing innovation in data and AI. Prior to joining Versant Media, Shane spent over three years at Monte Carlo, where he helped shape AI product strategy and customer success initiatives as Field CTO. Earlier, he spent nearly a decade at The New York Times, culminating as SVP of Data & Insights, where he was instrumental in scaling the company’s data platforms and analytics functions during its digital transformation. His earlier career includes senior analytics roles at Accenture Interactive, Memetrics, and Woolcott Research. Based in New York, Shane continues to be an active voice in the data community, blending strategic vision with deep technical expertise to advance the role of data in modern business. In the episode, Richie and Shane explore AI disasters and success stories, the concept of being AI-ready, essential roles and skills for AI projects, data quality's impact on AI, and much more. Links Mentioned in the Show: Versant MediaConnect with ShaneCourse: Responsible AI PracticesRelated Episode: Scaling Data Quality in the Age of Generative AI with Barr Moses, CEO of Monte Carlo Data, Prukalpa Sankar, Cofounder at Atlan, and George Fraser, CEO at FivetranRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
talk-data.com
Speaker
Shane Murray
6
talks
Filter by Event / Source
Talks & appearances
6 activities · Newest first
Shane Murray (Field CTO Monte Carlo, Former Head of Data NY Times) joins me to chat about the impact of AI on data teams and business strategies, data observability on unstructured data, and more.
American Airlines, one of the largest airlines in the world, processes a tremendous amount of data every single minute. With a data estate of this scale, accountability for the data goes beyond the data team; the business organization has to be equally invested in championing the quality, reliability, and governance of data. In this session, Andrew Machen, Senior Manager, Data Engineering at American Airlines will share how his team maximizes resources to deliver reliable data at scale. He'll also outline his strategy for aligning business leadership with an investment in data reliability, and how leveraging Monte Carlo's data + AI observability platform enabled them to reduce time spent resolving data reliability issues from 10 weeks to 2 days, saving millions of dollars and driving valuable trust in the data.
Your model is trained. Your pilot is live. Your data looks AI-ready. But for most teams, the toughest part of building successful AI starts after deployment. In this talk, Shane Murray and Ethan Post share lessons from the development of Monte Carlo’s Troubleshooting Agent – an AI assistant that helps users diagnose and fix data issues in production. They’ll unpack what it really takes to build and operate trustworthy AI systems in the real world, including: The Illusion of Done – Why deployment is just the beginning, and what breaks in production; Lessons from the Field – A behind-the-scenes look at the architecture, integration, and user experience of Monte Carlo’s agent; Operationalizing Reliability – How to evaluate AI performance, build the right team, and close the loop between users and model. Whether you're scaling RAG pipelines or running LLMs in production, you’ll leave with a playbook for building data and AI systems you—and your users—can trust.
In order for any data team to move from reactive to proactive and drive revenue for the business, they must make sure the basics are in place and that the team and data culture is mature enough to allow for scalable return on investment. Without these elements, data teams find themselves unable to make meaningful progress because they are stuck reacting to problems and responding to rudimentary questions from stakeholders across the organization. This quickly takes up bandwidth and keeps them from achieving meaningful ROI. In today’s episode, we have invited Shane Murray to break down how to effectively structure a data team, how data leaders can lead efficient decentralization, and how teams can scale their ROI in 2023. Shane is the Field CTO at Monte Carlo, a data reliability company that created the industry's first end-to-end Data Observability platform. Shane’s career has taken him through a successful 9-year tenure at The New York Times, where he grew the data analytics team from 12 to 150 people and managed all core data products. Shane is an expert when it comes to data observability, enabling effective ROI for data initiatives, scaling high-impact data teams, and more. Throughout the episode we discuss how to structure a data team for maximum efficiency, how data leaders can balance long-term and short-term data initiatives, how data maturity correlates to a team’s forward-thinking ability, data democratization with data insights and reporting ROI, best practices for change management, and much more.
When it comes to data, there are data consumers (analysts, builders and users of data products, and various other business stakeholders) and data producers (software engineers and various adjacent roles and systems). It's all too common for data producers to "break" the data as they add new features and functionality to systems as they focus on the operational processes the system supports and not the data that those processes spawn. How can this be avoided? One approach is to implement "data contracts." What that actually means… is the subject of this episode, which Shane Murray from Monte Carlo joined us to discuss! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.