talk-data.com talk-data.com

Topic

DataOps

data_management agile devops

2

tagged

Activity Trend

12 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Ashish Thusoo ×
Creating a Data-Driven Enterprise in Media

The data-driven revolution is finally hitting the media and entertainment industry. For decades, broadcast television and print media relied on traditional delivery channels for solvency and growth, but those channels fragmented as cable, streaming, and digital devices stole the show. In this ebook, you’ll learn about the trends, challenges, and opportunities facing players in this industry as they tackle big data, advanced analytics, and DataOps. You’ll explore best practices and lessons learned from three real-world media companies—Sling TV, Turner Broadcasting, and Comcast—as they proceed on their data-driven journeys. Along the way, authors Ashish Thusoo and Joydeep Sen Sarma explain how DataOps breaks down silos and connects everyone who handles data, including engineers, data scientists, analysts, and business users. Big-data-as-a-service provider Qubole provides a five-step maturity model that outlines the phases that a company typically goes through when it first encounters big data. Case studies include: Sling TV: this live streaming content platform delivers live TV and on-demand entertainment instantly to a variety of smart televisions, tablets, game consoles, computers, smartphones, and streaming devices Turner Broadcasting System: this Time Warner division recently created the Turner Data Cloud to support direct-to-consumer services, including FilmStruck, Boom (for kids), and NBA League Pass Comcast: the largest broadcasting and cable TV company is building a single integrated big data platform to deliver internet, TV, and voice to more than 28 million customers

Creating a Data-Driven Enterprise with DataOps

Many companies are busy collecting massive amounts of data, but few are taking advantage of this treasure horde to build a truly data insights-driven organization. To do so, the data team must democratize both data and the insights in a way that provides real-time access to all employees in the organization. This report explores DataOps, the process, culture, tools, and people required to scale big data pervasively across the enterprise. Just as DevOps has enabled organizations to improve coordination between developers and the operations team, DataOps closely connects everyone who handles data, including engineers, data scientists, analysts, and business users. Democratizing data with this approach requires removing barriers typical of siloed data, teams, and systems. In this report, Apache Hive creators Ashish Thusoo and Joydeep Sen Sarma examine the characteristics of a data-driven organization that supports a self-service model. Explore related topics such as data lakes, metadata, cloud architecture, and data-infrastructure-as-a-service Examine conclusions from a survey of more than 400 senior executives whose companies are in various stages of data maturity Learn how data pioneers at Facebook, Uber, LinkedIn, Twitter, and eBay created data-driven cultures and self-service data infrastructures for their organizations