talk-data.com talk-data.com

Topic

Cloud Composer

Google Cloud Composer

workflow_orchestration airflow google_cloud

7

tagged

Activity Trend

7 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Airflow Summit 2025 ×

This session will detail Allegro’s, a leading e-commerce company in Poland, journey with Apache Airflow. It will chart our evolution from a custom, on-premises Airflow-as-a-Service solution through a significant expansion to over 300 Cloud Composer instances in Google Cloud, culminating in Airflow becoming the core of our data processing. We orchestrate over 64,000 regular tasks spanning over 6,000 active DAGs on more than 200 Airflow instances. From feeding business-supporting dashboards, to managing main data marts, and handling ML pipelines, and more. We will share our practical experiences, lessons learned, and the strategies employed to manage and scale this critical infrastructure. Furthermore, we will introduce our innovative economy-of-share approach for providing ready-to-use Airflow environments, significantly enhancing both user productivity and cost efficiency.

We have a similar pattern of DAGs running for different data quality dimensions like accuracy, timeliness, & completeness. To do this again and again, we would be duplicating and potentially introducing human error while doing copy paste of code or making people write same code again. To solve for this, we are doing few things: Run DAGs via DagFactory to dynamically generate DAGs using just some YAML code for all the steps we want to run in our DQ checks. Hide this behind a UI which is hooked to github PR open step, now the user just provides some inputs or selects from dropdown in UI and a YAML DAG is generated for them. This highlights the potential for DAGFactory to hide Airflow Python code from users and make it more accessible to Data Analysts and Business Intelligence along with normal Software Engg, along with reducing human error. YAML is the perfect format to be able to generate code, create a PR and DagFactory is the perfect fir for that. All of this is running in GCP Cloud Composer.

This session will dive deep into leveraging the robust logging and audit capabilities of Google Cloud Platform, Cloud Composer and Apache Airflow to establish a fully transparent and verifiable data orchestration layer. We’ll demonstrate how to track and attribute every change—from environment configuration to individual task execution—essential for meeting stringent enterprise governance, compliance, and auditing requirements.

Apache Airflow 3 is a new state-of-the-art version of Airflow. For many users who plan to adopt Airflow 3 it’s important to understand how Airflow 3 behaves from performance perspective compared to Airflow 2. This presentation is going to present performance results for various Airflow 3 configurations and provides potential Airflow 3 adopters good understanding of its performance. The reference Airflow 3 configuration will be using Kubernetes cluster as a compute layer, PostgreSQL as Airflow Database and would be performed on Google Cloud Platform. Performance tests will be performed using community version of performance tests framework and there might be references to Cloud Composer (managed service for Apache Airflow). The tests will be done in production-grade configurations that might be good references for Airflow community users. Users will be provided with comparison of Airflow 3 and Airflow 2 from performance standpoint Users also will learn how to optimize Airflow scheduler performance by understanding DAG file processing, task scheduling and configuring Scheduler to run tens of thousands of DAGs/tasks in Airflow 3

The journey from ML model development to production deployment and monitoring is often complex and fragmented. How can teams overcome the chaos of disparate tools and processes? This session dives into how Apache Airflow serves as a unifying force in MLOps. We’ll begin with a look at the broader MLOps trends observed by Google within the Airflow community, highlighting how Airflow is evolving to meet these challenges and showcasing diverse MLOps use cases – both current and future. Then, Priceline will present a deep-dive case study on their MLOps transformation. Learn how they leveraged Cloud Composer, Google Cloud’s managed Apache Airflow service, to orchestrate their entire ML pipeline end-to-end: ETL, data preprocessing, model building & training, Dockerization, Google Artifact Registry integration, deployment, model serving, and evaluation. Discover how using Cloud Composer on GCP enabled them to build a scalable, reliable, adaptable, and maintainable MLOps practice, moving decisively from chaos to coordination. Cloud Composer (Airflow) has served as a major backbone in transforming the whole ML experience in Priceline. Join us to learn how to harness Airflow, particularly within a managed environment like Cloud Composer, for robust MLOps workflows, drawing lessons from both industry trends and a concrete, successful implementation.