talk-data.com talk-data.com

Topic

jmp

83

tagged

Activity Trend

1 peak/qtr
2020-Q1 2026-Q1

Activities

83 activities · Newest first

JMP 12 Quality and Process Methods

JMP 12 Quality and Process Methodsfocuses on the Fit Model platform and many of its personalities. Linear and logistic regression, analysis of variance and covariance, and stepwise procedures are covered. Also included are multivariate analysis of variance, mixed models, generalized models, and models based on penalized regression techniques.

JMP 12 Reliability and Survival Methods

JMP 12 Reliability and Survival Methods provides details about evaluating and improving reliability in a product or system and analyzing survival data for people and products. The book explains how to fit the best distribution to your time-to-event data or analyze destruction data. A few other topics include analyzing competing causes of failure, modeling reliability as improvements are made over time, and analyzing recurring events.

JMP 12 Specialized Models

JMP 12 Specialized Models provides details about modeling techniques such as partitioning, neural networks, nonlinear regression, and time series analysis. Topics include the Gaussian platform, which is useful in analyzing computer simulation experiments. The book also covers the Response Screening platform, which is useful in testing the effect of a predictor when you have many responses.

JMP Essentials, 2nd Edition

Grasp essential steps in order to generate meaningful results quickly with JMP.

JMP Essentials: An Illustrated Step-by-Step Guide for New Users, Second Edition is designed for the new or occasional JMP user who needs to generate meaningful graphs or results quickly. Drawing on their own experience working with these customers, the authors provide essential steps for what new users typically need to carry out with JMP. This newest edition has all new instructions and screen shots reflecting the latest release of JMP software. In addition, it has eight new detailed sections and 10 new subsections that include creating maps, filtering data, creating dashboards, and working with Excel data, all of which highlight new, useful and basic level enhancements to JMP.

The format of the book is unique. It adopts a show-and-tell design with essential step-by-step instructions and corresponding screen illustrations, which help users quickly see how to generate the desired results. In most cases, each section completes a JMP task, which maximizes the book's utility as a reference. In addition, each chapter contains a family of features that are carefully crafted to first introduce you to basic features and then on to more advanced ones. JMP Essentials: An Illustrated Step-by-Step Guide for New Users, Second Edition is the quickest and most accessible reference book available.

This is part of the SAS Press program.

Design and Analysis of Experiments by Douglas Montgomery: A Supplement for Using JMP

With a growing number of scientists and engineers using JMP software for design of experiments, there is a need for an example-driven book that supports the most widely used textbook on the subject, Design and Analysis of Experiments by Douglas C. Montgomery. Design and Analysis of Experiments by Douglas Montgomery: A Supplement for Using JMP meets this need and demonstrates all of the examples from the Montgomery text using JMP. In addition to scientists and engineers, undergraduate and graduate students will benefit greatly from this book.
While users need to learn the theory, they also need to learn how to implement this theory efficiently on their academic projects and industry problems. In this first book of its kind using JMP software, Rushing, Karl and Wisnowski demonstrate how to design and analyze experiments for improving the quality, efficiency, and performance of working systems using JMP. Topics include JMP software, two-sample t-test, ANOVA, regression, design of experiments, blocking, factorial designs, fractional-factorial designs, central composite designs, Box-Behnken designs, split-plot designs, optimal designs, mixture designs, and 2 k factorial designs. JMP platforms used include Custom Design, Screening Design, Response Surface Design, Mixture Design, Distribution, Fit Y by X, Matched Pairs, Fit Model, and Profiler.
With JMP software, Montgomery’s textbook, and Design and Analysis of Experiments by Douglas Montgomery: A Supplement for Using JMP, users will be able to fit the design to the problem, instead of fitting the problem to the design. This book is part of the SAS Press program.

Practical Data Analysis with JMP, Second Edition, 2nd Edition

Understand the concepts and techniques of analysis while learning to reason statistically.

Being an effective analyst requires that you know how to properly define a problem and apply suitable statistical techniques, as well as clearly and honestly communicate the results with information-rich visualizations and precise language. Being a well-informed consumer of analyses requires the same set of skills so that you can recognize credible, actionable research when you see it.

Robert Carver's Practical Data Analysis with JMP, Second Edition uses the powerful interactive and visual approach of JMP to introduce readers to the logic and methods of statistical thinking and data analysis. It enables you to discriminate among and to use fundamental techniques of analysis, enabling you to engage in statistical thinking by analyzing real-world problems. “Application Scenarios” at the end of each chapter challenge you to put your knowledge and skills to use with data sets that go beyond mere repetition of chapter examples, and three new review chapters help readers integrate ideas and techniques. In addition, the scope and sequence of the chapters have been updated with more coverage of data management and analysis of data.

The book can stand on its own as a learning resource for professionals or be used to supplement a standard college-level introduction-to-statistics textbook. It includes varied examples and problems that rely on real sets of data, typically starting with an important or interesting research question that an investigator has pursued. Reflective of the broad applicability of statistical reasoning, the problems come from a wide variety of disciplines, including engineering, life sciences, business, economics, among

Practical Data Analysis with JMP, Second Edition introduces you to the major platforms and essential features of JMP and will leave you with a sufficient background and the confidence to continue your exploration independently.

This book is part of the SAS Press program.

Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS

Improve efficiency while reducing costs in clinical trials with centralized monitoring techniques using JMP and SAS.

International guidelines recommend that clinical trial data should be actively reviewed or monitored; the well-being of trial participants and the validity and integrity of the final analysis results are at stake. Traditional interpretation of this guidance for pharmaceutical trials has led to extensive on-site monitoring, including 100% source data verification. On-site review is time consuming, expensive (estimated at up to a third of the cost of a clinical trial), prone to error, and limited in its ability to provide insight for data trends across time, patients, and clinical sites. In contrast, risk-based monitoring (RBM) makes use of central computerized review of clinical trial data and site metrics to determine if and when clinical sites should receive more extensive quality review or intervention.

Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS presents a practical implementation of methodologies within JMP Clinical for the centralized monitoring of clinical trials. Focused on intermediate users, this book describes analyses for RBM that incorporate and extend the recommendations of TransCelerate Biopharm Inc., methods to detect potential patient-or investigator misconduct, snapshot comparisons to more easily identify new or modified data, and other novel visual and analytical techniques to enhance safety and quality reviews. Further discussion highlights recent regulatory guidance documents on risk-based approaches, addresses the requirements for CDISC data, and describes methods to supplement analyses with data captured external to the study database.

Given the interactive, dynamic, and graphical nature of JMP Clinical, any individual from the clinical trial team - including clinicians, statisticians, data managers, programmers, regulatory associates, and monitors - can make use of this book and the numerous examples contained within to streamline, accelerate, and enrich their reviews of clinical trial data.

The analytical methods described in Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS enable the clinical trial team to take a proactive approach to data quality and safety to streamline clinical development activities and address shortcomings while the study is ongoing.

This book is part of the SAS Press

Discovering Partial Least Squares with JMP

Partial Least Squares (PLS) is a flexible statistical modeling technique that applies to data of any shape. It models relationships between inputs and outputs even when there are more predictors than observations. Using JMP statistical discovery software from SAS, Discovering Partial Least Squares with JMP explores PLS and positions it within the more general context of multivariate analysis.

Ian Cox and Marie Gaudard use a “learning through doing” style. This approach, coupled with the interactivity that JMP itself provides, allows you to actively engage with the content. Four complete case studies are presented, accompanied by data tables that are available for download. The detailed “how to” steps, together with the interpretation of the results, help to make this book unique.

Discovering Partial Least Squares with JMP is of interest to professionals engaged in continuing development, as well as to students and instructors in a formal academic setting. The content aligns well with topics covered in introductory courses on: psychometrics, customer relationship management, market research, consumer research, environmental studies, and chemometrics. The book can also function as a supplement to courses in multivariate statistics and to courses on statistical methods in biology, ecology, chemistry, and genomics.

While the book is helpful and instructive to those who are using JMP, a knowledge of JMP is not required, and little or no prior statistical knowledge is necessary. By working through the introductory chapters and the case studies, you gain a deeper understanding of PLS and learn how to use JMP to perform PLS analyses in real-world situations.

This book motivates current and potential users of JMP to extend their analytical repertoire by embracing PLS. Dynamically interacting with JMP, you will develop confidence as you explore underlying concepts and work through the examples. The authors provide background and guidance to support and empower you on this journey.

This book is part of the SAS Press program.

JMP 11 Consumer Research

JMP 11 Consumer Research focuses on analyses that help users observe and predict subject's behavior, particularly those in the market research field. The Uplift platform predicts consumer behavior based on shifts in marketing efforts. Learn how to tabulate and summarize categorical responses with the Categorical platform. Factor Analysis rotates principal components to help identify which directions have the most variation among the variables. The book also covers Item Analysis, a method for identifying latent traits that might affect an individual's choices. And read about the Choice platform, which market researchers use to estimate probability in consumer spending.

JMP 11 Design of Experiments Guide

The JMP 11 Design of Experiments Guide covers classic DOE designs (for example, full factorial, response surface, and mixture designs). Read about more flexible custom designs, which you generate to fit your particular experimental situation. And discover JMP's definitive screening designs, an efficient way to identify important factor interactions using fewer runs than required by traditional designs. The book also provides guidance on determining an appropriate sample size for your study.

JMP 11 Essential Graphing

Start with JMP 11 Essential Graphing to find the ideal graph for your data. The book begins with Graph Builder, a quick way to create graphs in a drag-and-drop window. Line charts, ellipses, box plots, and maps are just a few of the graphs available in Graph Builder. Find information about creating other types of plots: bubble plots, scatterplots, parallel plots, and more.