talk-data.com talk-data.com

Topic

Kafka

Apache Kafka

distributed_streaming message_queue event_streaming

4

tagged

Activity Trend

20 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Big Data LDN 2025 ×

Data leaders today face a familiar challenge: complex pipelines, duplicated systems, and spiraling infrastructure costs. Standardizing around Kafka for real-time and Iceberg for large-scale analytics has gone some way towards addressing this but still requires separate stacks, leaving teams to stitch them together at high expense and risk.

This talk will explore how Kafka and Iceberg together form a new foundation for data infrastructure. One that unifies streaming and analytics into a single, cost-efficient layer. By standardizing on these open technologies, organizations can reduce data duplication, simplify governance, and unlock both instant insights and long-term value from the same platform.

You will come away with a clear understanding of why this convergence is reshaping the industry, how it lowers operational risk, and advantages it offers for building durable, future-proof data capabilities.

Data leaders today face a familiar challenge: complex pipelines, duplicated systems, and spiraling infrastructure costs. Standardizing around Kafka for real-time and Iceberg for large-scale analytics has gone some way towards addressing this but still requires separate stacks, leaving teams to stitch them together at high expense and risk.

This talk will explore how Kafka and Iceberg together form a new foundation for data infrastructure. One that unifies streaming and analytics into a single, cost-efficient layer. By standardizing on these open technologies, organizations can reduce data duplication, simplify governance, and unlock both instant insights and long-term value from the same platform.

You will come away with a clear understanding of why this convergence is reshaping the industry, how it lowers operational risk, and advantages it offers for building durable, future-proof data capabilities.

Data leaders today face a familiar challenge: complex pipelines, duplicated systems, and spiraling infrastructure costs. Standardizing around Kafka for real-time and Iceberg for large-scale analytics has gone some way towards addressing this but still requires separate stacks, leaving teams to stitch them together at high expense and risk.

This talk will explore how Kafka and Iceberg together form a new foundation for data infrastructure. One that unifies streaming and analytics into a single, cost-efficient layer. By standardizing on these open technologies, organizations can reduce data duplication, simplify governance, and unlock both instant insights and long-term value from the same platform.

You will come away with a clear understanding of why this convergence is reshaping the industry, how it lowers operational risk, and advantages it offers for building durable, future-proof data capabilities.

Moving data between operational systems and analytics platforms is often a painful process. Traditional pipelines that transfer data in and out of warehouses tend to become complex, brittle, and expensive to maintain over time.

Much of this complexity, however, is avoidable. Data in motion and data at rest—Kafka Topics and Iceberg Tables—can be treated as two sides of the same coin. By establishing an equivalence between Topics and Tables, it’s possible to transparently map between them and rethink how pipelines are built.

This talk introduces a declarative approach to bridging streaming and table-based systems. By shifting complexity into the data layer, we can decompose complex, imperative pipelines into simpler, more reliable workflows

We’ll explore the design principles behind this approach, including schema mapping and evolution between Kafka and Iceberg, and how to build a system that can continuously materialize and optimize hundreds of thousands of topics as Iceberg tables.

Whether you're building new pipelines or modernizing legacy systems, this session will provide practical patterns and strategies for creating resilient, scalable, and future-proof data architectures.