Generative AI is fantastic but has a major problem: sometimes it "hallucinates", meaning it makes things up. In a business product like a chatbot, this can be disastrous. Vector databases like Pinecone are one of the solutions to mitigating the problem. Vector databases are a key component to any AI application, as well as things like enterprise search and document search. They have become an essential tool for every business, and with the rise in interest in AI in the last couple of years, the space is moving quickly. In this episode, you'll find out how to make use of vector databases, and find out about the latest developments at Pinecone. Elan Dekel is the VP of Product at Pinecone, where he oversees the development of the Pinecone vector database. He was previously Product Lead for Core Data Serving at Google, where he led teams working on the indexing systems to serve data for Google search, YouTube search, and Google Maps. Before that, he was Founder and CEO of Medico, which was acquired by Everyday Health. In the episode, RIchie and Elan explore LLMs, hallucination in generative models, vector databases and the best use-cases for them, semantic search, business applications of vector databases and semantic search, the tech stack for AI applications, cost considerations when investing in AI projects, emerging roles within the AI space, the future of vector databases and AI, and much more. Links Mentioned in the Show: Pinecone CanopyPinecone ServerlessLlamaIndexLangchain[Code Along] Semantic Search with PineconeRelated Episode: Expanding the Scope of Generative AI in the Enterprise with Bal Heroor, CEO and Principal at MactoresSign up to RADAR: The Analytics Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
talk-data.com
Topic
LLM
Large Language Models (LLM)
29
tagged
Activity Trend
Top Events
We’ve heard so much about the value and capabilities of generative AI over the past year, and we’ve all become accustomed to the chat interfaces of our preferred models. One of the main concerns many of us have had has been privacy. Is OpenAI keeping the data and information I give to ChatGPT secure? One of the touted solutions to this problem is running LLMs locally on your own machine, but with the hardware cost that comes with it, running LLMs locally has not been possible for many of us. That might now be starting to change. Nuri Canyaka is VP of AI Marketing at Intel. Prior to Intel, Nuri spent 16 years at Microsoft, starting out as a Technical Evangelist, and leaving the organization as the Senior Director of Product Marketing. He ran the GTM team that helped generate adoption of GPT in Microsoft Azure products. La Tiffaney Santucci is Intel’s AI Marketing Director, specializing in their Edge and Client products. La Tiffaney has spent over a decade at Intel, focussing on partnerships with Dell, Google Amazon and Microsoft. In the episode, Richie, Nuri and La Tiffaney explore AI’s impact on marketing analytics, the adoptions of AI in the enterprise, how AI is being integrated into existing products, the workflow for implementing AI into business processes and the challenges that come with it, the importance of edge AI for instant decision-making in uses-cases like self-driving cars, the emergence of AI engineering as a distinct field of work, the democratization of AI, what the state of AGI might look like in the near future and much more. About the AI and the Modern Data Stack DataFramed Series This week we’re releasing 4 episodes focused on how AI is changing the modern data stack and the analytics profession at large. The modern data stack is often an ambiguous and all-encompassing term, so we intentionally wanted to cover the impact of AI on the modern data stack from different angles. Here’s what you can expect: Why the Future of AI in Data will be Weird with Benn Stancil, CTO at Mode & Field CTO at ThoughtSpot — Covering how AI will change analytics workflows and tools How Databricks is Transforming Data Warehousing and AI with Ari Kaplan, Head Evangelist & Robin Sutara, Field CTO at Databricks — Covering Databricks, data intelligence and how AI tools are changing data democratizationAdding AI to the Data Warehouse with Sridhar Ramaswamy, CEO at Snowflake — Covering Snowflake and its uses, how generative AI is changing the attitudes of leaders towards data, and how to improve your data managementAccelerating AI Workflows with Nuri Cankaya, VP of AI Marketing & La Tiffaney Santucci, AI Marketing Director at Intel — Covering AI’s impact on marketing analytics, how AI is being integrated into existing products, and the democratization of AI Links Mentioned in the Show: Intel OpenVINO™ toolkitIntel Developer Clouds for Accelerated ComputingAWS Re:Invent[Course] Implementing AI Solutions in BusinessRelated Episode: Intel CTO Steve Orrin on How Governments Can Navigate the Data & AI RevolutionSign up to a href="https://www.datacamp.com/radar-analytics-edition"...
2023 was a huge year for data and AI. Everyone who didn't live under a rock started using generative AI, and much was teased by companies like OpenAI, Microsoft, Google and Meta. We saw the millions of different use cases generative AI could be applied to, as well as the iterations we could expect from the AI space, such as connected multi-modal models, LLMs in mobile devices and formal legislation. But what has this meant for DataCamp? What will we do to facilitate learners and organizations around the world in staying ahead of the curve? In this special episode of DataFramed, we sit down with DataCamp Co-Founders Jo Cornelissen, Chief Executive Officer, and Martijn Theuwissen, Chief Operating Officer, to discuss their expectations for data & AI in 2024. In the episode, Richie, Jo and Martijn discuss generative AI's mainstream impact in 2023, the broad use cases of generative AI and skills required to utilize it effectively, trends in AI and software development, how the programming languages for data are evolving, new roles in data & AI, the job market and skill development in data science and their predictions for 2024. Links Mentioned in the Show: Free course - Become an AI DeveloperWebinar - Data & AI Trends & Predictions 2024 Courses: Artificial Intelligence (AI) StrategyGenerative AI for BusinessImplementing AI Solutions in BusinessAI Ethics
There are a few caveats to using generative AI tools, those caveats have led to a few tips that have quickly become second nature to those that use LLMs like ChatGPT. The main one being: have the domain knowledge to validate the output in order to avoid hallucinations. Hallucinations are one of the weak spots for LLMs due to the nature of the way they are built, as they are trained to correlate data in order to predict what might come next in an incomplete sequence. Does this mean that we’ll always have to be wary of the output of AI products, with the expectation that there is no intelligent decision-making going on under the hood? Far from it. Causal AI is bound by reason—rather than looking at correlation, these exciting systems are able to focus on the underlying causal mechanisms and relationships. As the AI field rapidly evolves, Causal AI is an area of research that is likely to have a huge impact on a huge number of industries and problems. Paul Hünermund is an Assistant Professor of Strategy and Innovation at Copenhagen Business School. In his research, Dr. Hünermund studies how firms can leverage new technologies in the space of machine learning and artificial intelligence such as Causal AI for value creation and competitive advantage. His work explores the potential for biases in organizational decision-making and ways for managers to counter them. It thereby sheds light on the origins of effective business strategies in markets characterized by a high degree of technological competition and the resulting implications for economic growth and environmental sustainability. His work has been published in The Journal of Management Studies, the Econometrics Journal, Research Policy, Journal of Product Innovation Management, International Journal of Industrial Organization, MIT Sloan Management Review, and Harvard Business Review, among others. In the full episode, Richie and Paul explore Causal AI, its differences when compared to other forms of AI, use cases of Causal AI in fields like drug development, marketing, manufacturing, and defense. They also discuss how Causal AI contributes to better decision-making, the role of domain experts in getting accurate results, what happens in the early stages of Causal AI adoption, exciting new developments within the Causal AI space and much more. Links Mentioned in the Show: Causal Data Science in BusinessCausal AI by causaLensIntro to Causal AI Using the DoWhy Library in PythonLesson: Inference (causal) models
Over the past year, we’ve seen a full hype cycle of hysteria and discourse surrounding generative AI. It almost seems difficult to think back to a time when no one had used ChatGPT. We are in the midst of the fourth industrial revolution, and technology is moving rapidly. Better performing and more capable models are being released at a stunning rate, and with the growing presence of multimodal AI, can we expect another whirlwind year that vastly changes the state of play within AI again? Who might be able to provide insight into what is to come in 2024? Craig S. Smith is an American journalist, former executive of The New York Times, and host of the podcast Eye on AI. Until January 2000, he wrote for The Wall Street Journal, most notably covering the rise of the religious movement Falun Gong in China. He has reported for the Times from more than 40 countries and has covered several conflicts, including the 2001 invasion of Afghanistan, the 2003 war in Iraq, and the 2006 Israeli-Lebanese war. He retired from the Times in 2018 and now writes about artificial intelligence for the Times and other publications. He was a special Government employee for the National Security Commission on Artificial Intelligence until the commission's end in October 2021. In the episode, Richie and Craig explore the 2023 advancements in generative AI, such as GPT-4, and the evolving roles of companies like Anthropic and Meta, practical AI applications for research and image generation, challenges in large language models, the promising future of world models and AI agents, the societal impacts of AI, the issue of misinformation, computational constraints, and the importance of AI literacy in the job market, the transformative potential of AI in various sectors and much more. Links Mentioned in the Show: Eye on AIWayveAnthropicCohereMidjourneyYann Lecun
From the dawn of humanity, decisions, both big and small, have shaped our trajectory. Decisions have built civilizations, forged alliances, and even charted the course of our very evolution. And now, as data & AI become more widespread, the potential upside for better decision making is massive. Yet, like any technology, the true value of data & AI is realized by how we wield it. We're often drawn to the allure of the latest tools and techniques, but it's crucial to remember that these tools are only as effective as the decisions we make with them. ChatGPT is only as good as the prompt you decide to feed it and what you decide to do with the output. A dashboard is only as good as the decisions that it influences. Even a data science team is only as effective as the value they deliver to the organization. So in this vast landscape of data and AI, how can we master the art of better decision making? How can we bridge data & AI with better decision intelligence? Cassie Kozyrkov founded the field of Decision Intelligence at Google where, until recently, she served as Chief Decision Scientist, advising leadership on decision process, AI strategy, and building data-driven organizations. Upon leaving Google, Cassie started her own company of which she is the CEO, Data Scientific. In almost 10 years at the company, Cassie personally trained over 20,000 Googlers in data-driven decision-making and AI and has helped over 500 projects implement decision intelligence best practices. Cassie also previously served in Google's Office of the CTO as Chief Data Scientist, and the rest of her 20 years of experience was split between consulting, data science, lecturing, and academia. Cassie is a top keynote speaker and a beloved personality in the data leadership community, followed by over half a million tech professionals. If you've ever went on a reading spree about AI, statistics, or decision-making, chances are you've encountered her writing, which has reached millions of readers. In the episode Cassie and Richie explore misconceptions around data science, stereotypes associated with being a data scientist, what the reality of working in data science is, advice for those starting their career in data science, and the challenges of being a data ‘jack-of-all-trades’. Cassie also shares what decision-science and decision intelligence are, what questions to ask future employers in any data science interview, the importance of collaboration between decision-makers and domain experts, the differences between data science models and their real-world implementations, the pros and cons of generative AI in data science, and much more. Links mentioned in the Show: Data scientist: The sexiest job of the 22nd centuryThe Netflix PrizeAI Products: Kitchen AnalogyType one, Two & Three Errors in StatisticsCourse: Data-Driven Decision Making for BusinessRadar: Data & AI Literacy...
Generative AI is here to stay—even in the 8 months since the public release of ChatGPT, there are an abundance of AI tools to help make us more productive at work and ease the stress of planning and execution of our daily lives among other things. Already, many of us are wondering what is to come in the next 8 months, the next year, and the next decade of AI’s evolution. In the grand scheme of things, this really is just the beginning. But what should we expect in this Cambrian explosion of technology? What are the use cases being developed behind the scenes? What do we need to be mindful of when training the next generations of AI? Can we combine multiple LLMs to get better results? Bal Heroor is CEO and Principal at Mactores and has led over 150 business transformations driven by analytics and cutting-edge technology. His team at Mactores are researching and building AI, AR/VR, and Quantum computing solutions for business to gain a competitive advantage. Bal is also the Co-Founder of Aedeon—the first hyper-scale Marketplace for Data Analytics and AI talent. In the episode, Richie and Bal explore common use cases for generative AI, how it's evolving to solve enterprise problems, challenges of data governance and the importance of explainable AI, the challenges of tracking the lineage of AI and data in large organizations. Bal also touches on the shift from general-purpose generative AI models to more specialized models, fascinating use cases in the manufacturing industry, what to consider when adopting AI solutions in business, and much more. Links mentioned in the show: PulsarTrifactaAWS Clarify[Course] Introduction to ChatGPT[Course] Implementing AI Solutions in Business[Course] Generative AI Concepts
In a time when AI is evolving at breakneck speeds, taking a step back and gaining a bird's-eye view of the evolving AI ecosystem is paramount to understanding where the field is headed. With this bird's-eye view come a series of questions. Which trends will dominate generative AI in the foreseeable future? What are the truly transformative use-cases that will reshape our business landscape? What does the skills economy look like in an age of hyper intelligence? Enter Joanne Chen, General Partner at Foundation Capital. Joanne invests in early-stage AI-first B2B applications and data platforms that are the building blocks of the automated enterprise. She has shared her learnings as a featured speaker at conferences, including CES, SXSW, WebSummit, and has spoken about the impact of AI on society in her TED talk titled "Confessions of an AI Investor." Joanne began her career as an engineer at Cisco Systems and later co-founded a mobile gaming company. She also spent many years working on Wall Street at Jefferies & Company, helping tech companies go through the IPO and M&A processes, and at Probitas Partners, advising venture firms on their fundraising process. Throughout the episode, Richie and Joanne cover emerging trends in generative AI, business use cases that have emerged in the past year since the advent of tools like ChatGPT, the role of AI in augmenting work, the ever-changing job market and AI's impact on it, as well as actionable insights for individuals and organizations wanting to adopt AI. Links mentioned in the show: JasperAIAnyScaleCerebras[Course] Introduction to ChatGPT[Course] Implementing AI Solutions in Business[Course] Generative AI Concepts
Data and AI are advancing at an unprecedented rate—and while the jury is still out on achieving superintelligent AI systems, the idea of artificial intelligence that can understand and learn anything—an “artificial general intelligence”—is becoming more likely. What does the rise of AI mean for the future of software and work as we know it? How will AI help reinvent most of the ways we interact with the digital and physical world? Bob Muglia is a data technology investor and business executive, former CEO of Snowflake, and past president of Microsoft's Server and Tools Division. As a leader in data & AI, Bob focuses on how innovation and ethical values can merge to shape the data economy's future in the era of AI. He serves as a board director for emerging companies that seek to maximize the power of data to help solve some of the world's most challenging problems. In the episode, Richie and Bob explore the current era of AI and what it means for the future of software. Throughout the episode, they discuss how to approach driving value with large language models, the main challenges organizations face when deploying AI systems, the risks, and rewards of fine-tuning LLMs for specific use cases, what the next 12 to 18 months hold for the burgeoning AI ecosystem, the likelihood of superintelligence within our lifetimes, and more. Links from the show: The Datapreneurs by Bob Muglia and Steve HammThe Singularity is Near by Ray KurzweilIsaac AsimovSnowflakePineconeDocugamiOpenAI/GPT-4The Modern Data Stack