talk-data.com talk-data.com

Event

O'Reilly Data Science Books

2013-08-09 – 2026-02-25 Oreilly Visit website ↗

Activities tracked

2118

Collection of O'Reilly books on Data Science.

Sessions & talks

Showing 1776–1800 of 2118 · Newest first

Search within this event →
Event History Analysis with R

With an emphasis on social science applications, Event History Analysis with R presents an introduction to survival and event history analysis using real-life examples. Keeping mathematical details to a minimum, the book covers key topics, including both discrete and continuous time data, parametric proportional hazards, and accelerated failure times. Features Introduces parametric proportional hazards models with baseline distributions like the Weibull, Gompertz, Lognormal, and Piecewise constant hazard distributions, in addition to traditional Cox regression Presents mathematical details as well as technical material in an appendix Includes real examples with applications in demography, econometrics, and epidemiology Provides a dedicated R package, eha, containing special treatments, including making cuts in the Lexis diagram, creating communal covariates, and creating period statistics A much-needed primer, Event History Analysis with R is a didactically excellent resource for students and practitioners of applied event history and survival analysis.

Logistic Regression Using SAS, 2nd Edition

If you are a researcher or student with experience in multiple linear regression and want to learn about logistic regression, Paul Allison's Logistic Regression Using SAS: Theory and Application, Second Edition, is for you! Informal and nontechnical, this book both explains the theory behind logistic regression, and looks at all the practical details involved in its implementation using SAS. Several real-world examples are included in full detail. This book also explains the differences and similarities among the many generalizations of the logistic regression model. The following topics are covered: binary logistic regression, logit analysis of contingency tables, multinomial logit analysis, ordered logit analysis, discrete-choice analysis, and Poisson regression. Other highlights include discussions on how to use the GENMOD procedure to do loglinear analysis and GEE estimation for longitudinal binary data. Only basic knowledge of the SAS DATA step is assumed. The second edition describes many new features of PROC LOGISTIC, including conditional logistic regression, exact logistic regression, generalized logit models, ROC curves, the ODDSRATIO statement (for analyzing interactions), and the EFFECTPLOT statement (for graphing nonlinear effects). Also new is coverage of PROC SURVEYLOGISTIC (for complex samples), PROC GLIMMIX (for generalized linear mixed models), PROC QLIM (for selection models and heterogeneous logit models), and PROC MDC (for advanced discrete choice models).

This book is part of the SAS Press program.

Designing Great Data Products

In the past few years, we’ve seen many data products based on predictive modeling. These products range from weather forecasting to recommendation engines like Amazon's. Prediction technology can be interesting and mathematically elegant, but we need to take the next step: going from recommendations to products that can produce optimal strategies for meeting concrete business objectives. We already know how to build these products: they've been in use for the past decade or so, but they're not as common as they should be. This report shows how to take the next step: to go from simple predictions and recommendations to a new generation of data products with the potential to revolutionize entire industries.

Quantifying the User Experience

Quantifying the User Experience: Practical Statistics for User Research offers a practical guide for using statistics to solve quantitative problems in user research. Many designers and researchers view usability and design as qualitative activities, which do not require attention to formulas and numbers. However, usability practitioners and user researchers are increasingly expected to quantify the benefits of their efforts. The impact of good and bad designs can be quantified in terms of conversions, completion rates, completion times, perceived satisfaction, recommendations, and sales. The book discusses ways to quantify user research; summarize data and compute margins of error; determine appropriate samples sizes; standardize usability questionnaires; and settle controversies in measurement and statistics. Each chapter concludes with a list of key points and references. Most chapters also include a set of problems and answers that enable readers to test their understanding of the material. This book is a valuable resource for those engaged in measuring the behavior and attitudes of people during their interaction with interfaces. Provides practical guidance on solving usability testing problems with statistics for any project, including those using Six Sigma practices Show practitioners which test to use, why they work, best practices in application, along with easy-to-use excel formulas and web-calculators for analyzing data Recommends ways for practitioners to communicate results to stakeholders in plain English Resources and tools available at the authors’ site: http://www.measuringu.com/

Adaptive Tests of Significance Using Permutations of Residuals with R and SAS

Provides the tools needed to successfully perform adaptive tests across a broad range of datasets Adaptive Tests of Significance Using Permutations of Residuals with R and SAS® illustrates the power of adaptive tests and showcases their ability to adjust the testing method to suit a particular set of data. The book utilizes state-of-the-art software to demonstrate the practicality and benefits for data analysis in various fields of study. Beginning with an introduction, the book moves on to explore the underlying concepts of adaptive tests, including: Smoothing methods and normalizing transformations Permutation tests with linear methods Applications of adaptive tests Multicenter and cross-over trials Analysis of repeated measures data Adaptive confidence intervals and estimates Throughout the book, numerous figures illustrate the key differences among traditional tests, nonparametric tests, and adaptive tests. R and SAS® software packages are used to perform the discussed techniques, and the accompanying datasets are available on the book's related website. In addition, exercises at the end of most chapters enable readers to analyze the presented datasets by putting new concepts into practice. Adaptive Tests of Significance Using Permutations of Residuals with R and SAS® is an insightful reference for professionals and researchers working with statistical methods across a variety of fields including the biosciences, pharmacology, and business. The book also serves as a valuable supplement for courses on regression analysis and adaptive analysis at the upper-undergraduate and graduate levels.

Mathematics and Statistics for Financial Risk Management

Mathematics and Statistics for Financial Risk Management is a practical guide to modern financial risk management for both practitioners and academics. The recent financial crisis and its impact on the broader economy underscore the importance of financial risk management in today's world. At the same time, financial products and investment strategies are becoming increasingly complex. Today, it is more important than ever that risk managers possess a sound understanding of mathematics and statistics. In a concise and easy-to-read style, each chapter of this book introduces a different topic in mathematics or statistics. As different techniques are introduced, sample problems and application sections demonstrate how these techniques can be applied to actual risk management problems. Exercises at the end of each chapter and the accompanying solutions at the end of the book allow readers to practice the techniques they are learning and monitor their progress. A companion website includes interactive Excel spreadsheet examples and templates. This comprehensive resource covers basic statistical concepts from volatility and Bayes' Law to regression analysis and hypothesis testing. Widely used risk models, including Value-at-Risk, factor analysis, Monte Carlo simulations, and stress testing are also explored. A chapter on time series analysis introduces interest rate modeling, GARCH, and jump-diffusion models. Bond pricing, portfolio credit risk, optimal hedging, and many other financial risk topics are covered as well. If you're looking for a book that will help you understand the mathematics and statistics of financial risk management, look no further.

How 30 Great Ads Were Made

This book takes readers behind the scenes in the world of advertising, showcasing 30 phenomenally successful campaigns from the last decade. Fascinating not only for industry professionals but also for anyone who is curious about this creative process. Technical information on how the ads were developed is accompanied by anecdotes from the creatives, directors and clients, with accounts of how the ads were made and the problems encountered along the way. Each campaign is illustrated with imagery showing the stages it went through in development – including sketches and early ideas that may have been abandoned, storyboards, animatics and photos from shoots, as well as shots of the final ads. In addition to offering an insight into the working practices within advertising, the book also demonstrates how the current period of rapid change is influencing the skills now required to work within the industry.

Webbots, Spiders, and Screen Scrapers, 2nd Edition

There's a wealth of data online, but sorting and gathering it by hand can be tedious and time consuming. Rather than click through page after endless page, why not let bots do the work for you? Webbots, Spiders, and Screen Scrapers will show you how to create simple programs with PHP/CURL to mine, parse, and archive online data to help you make informed decisions.

Carpenter's Guide to Innovative SAS Techniques

Carpenter's Guide to Innovative SAS Techniques offers advanced SAS programmers an all-in-one programming reference that includes advanced topics not easily found outside the depths of SAS documentation or more advanced training classes. Art Carpenter has written fifteen chapters of advanced tips and techniques, including topics on data summary, data analysis, and data reporting. Special emphasis is placed on DATA step techniques that solve complex data problems. There are numerous examples that illustrate advanced techniques that take advantage of formats, interface with the macro language, and utilize the Output Delivery System. Additional topics include operating system interfaces, table lookup techniques, and the creation of customized reports.

JMP 10 Modeling and Multivariate Methods

JMP 10 Modeling and Multivariate Methods begins by showing you how to take advantage of classic modeling techniques such as linear, nonlinear, and mixed models. The book continues with discussions on neural networking, time series analysis, multivariate techniques, and stepwise regression along with many other JMP modeling and multivariate methods. Examples guide you through each analysis, and statistical references and algorithms are included.

JMP 10 Quality and Reliability Methods

JMP 10 Quality and Reliability Methods covers platforms used for quality control and reliability engineering. The book provides of an overview of statistical methods, and describes some JMP 10 report windows and options. Read about lifetime distribution, reliability and survival analysis, recurrence analysis, reliability forecasting, and measurement systems analysis. Learn how to model changes in product reliability with Crow-AMSAA models. Also included are instructions for creating control charts, variability charts, Ishikawa diagrams, Pareto plots, and more.

JMP 10 Scripting Guide

The JMP 10 Scripting Guide provides extensive instructions for using the powerful JMP Scripting Language (JSL). This book begins with an introduction to JSL terminology, examples of how to write your own scripts, and details on script development tools such as the debugger and editor. A description of the language elements follows along with examples of writing JSL scripts to manipulate data tables, platforms, display objects, three-dimensional graphs, and matrices. Learn how to integrate JMP with SAS, R, and Microsoft Excel. Design applications in a drag-and-drop interface called Application Builder, and create add-ins to extend JMP functionality with Add-In Builder. Other topics include examples of scripts for common tasks and a syntax reference, which defines the functions, operators, and messages used in JSL.

Using JMP 10

Using JMP for JMP 10 includes instructions for performing common tasks such as manipulating files, entering and managing data, transforming data table columns, exporting graphical reports, saving analyses as scripts, integrating with SAS, and more. This book also includes a reference for functions available in the Formula Editor.

gnuplot Cookbook

Master the art of technical plotting with 'gnuplot Cookbook'. This book serves as an indispensable guide to utilizing gnuplot's full range of capabilities for creating stunning 2D and 3D plots, interactive graphs, and seamless visual integration into programming projects. What this Book will help me do Gain precise control over the aesthetics and presentation of your graphs. Understand how to create complex graphical illustrations from multiple data sources. Learn to integrate gnuplot effectively into your programming workflows and systems. Discover how to produce professional-grade technical documents with high-quality charts and illustrations. Master interactive graph creation for engaging web content. Author(s) Lee Phillips, a seasoned expert in scientific and technical visualization, has leveraged years of practical experience to provide this comprehensive guide to gnuplot. With a sharp focus on clarity and functionality, Lee brings a hands-on approach to teaching through meticulously crafted examples and detailed explanations. Who is it for? This book is ideal for scientists, engineers, and data analysts who are either just starting or looking to deepen their expertise with gnuplot. It's perfect for those with a foundational understanding of graph plotting, aspiring to produce high-quality visualizations and integrate them effectively into diverse projects.

SAS/GRAPH: Beyond the Basics

Robert Allison's SAS/GRAPH: Beyond the Basics collects examples that demonstrate a variety of techniques you can use to create custom graphs using SAS/GRAPH software. SAS/GRAPH is known for its flexibility and power, but few people know how to use it to its full potential. Written for the SAS programmer with experience using Base SAS to work with data, the book includes examples that can be used in a variety of industry sectors. SAS/GRAPH: Beyond the Basics will help you create the exact graph you want.

Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises, 4th Edition

The Fourth Edition to the Introduction of Random Signals and Applied Kalman Filtering is updated to cover innovations in the Kalman filter algorithm and the proliferation of Kalman filtering applications from the past decade. The text updates both the research advances in variations on the Kalman filter algorithm and adds a wide range of new application examples. Several chapters include a significant amount of new material on applications such as simultaneous localization and mapping for autonomous vehicles, inertial navigation systems and global satellite navigation systems.

Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications

Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. Winner of a 2012 PROSE Award in Computing and Information Sciences from the Association of American Publishers, this book presents a comprehensive how-to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities. The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. Extensive case studies, most in a tutorial format, allow the reader to 'click through' the example using a software program, thus learning to conduct text mining analyses in the most rapid manner of learning possible Numerous examples, tutorials, power points and datasets available via companion website on Elsevierdirect.com Glossary of text mining terms provided in the appendix

Practical Data Mining

Intended for those who need a practical guide to proven and up-to-date data mining techniques and processes, this book covers specific problem genres. With chapters that focus on application specifics, it allows readers to go to material relevant to their problem domain. Each section starts with a chapter-length roadmap for the given problem domain. This includes a checklist/decision-tree, which allows the reader to customize a data mining solution for their problem space. The roadmap discusses the technical components of solutions.

Statistical Learning and Data Science

Driven by a vast range of applications, data analysis and learning from data are vibrant areas of research. Various methodologies, including unsupervised data analysis, supervised machine learning, and semi-supervised techniques, have continued to develop to cope with the increasing amount of data collected through modern technology. With a focus on applications, this volume presents contributions from some of the leading researchers in the different fields of data analysis. Synthesizing the methodologies into a coherent framework, the book covers a range of topics, from large-scale machine learning to synthesis objects analysis.

Statistics of Medical Imaging

Statistical investigation into technology not only provides a better understanding of the intrinsic features of the technology (analysis), but also leads to an improved design of the technology (synthesis). Physical principles and mathematical procedures of medical imaging technologies have been extensively studied during past decades. However, less work has been done on their statistical aspect. Filling this gap, this book provides a theoretical framework for statistical investigation into medical technologies. Rather than offer detailed descriptions of statistics of basic imaging protocols of X-ray CT and MRI, the book presents a method to conduct similar statistical investigations into more complicated imaging protocols.

Spectral Feature Selection for Data Mining

Spectral Feature Selection for Data Mining introduces a novel feature selection technique that establishes a general platform for studying existing feature selection algorithms and developing new algorithms for emerging problems in real-world applications. This technique represents a unified framework for supervised, unsupervised, and semisupervise