talk-data.com talk-data.com

Event

Experiencing Data w/ Brian T. O’Neill (AI & data product management leadership—powered by UX design)

2022-02-08 – 2025-11-27 Podcasts Visit website ↗

Activities tracked

63

Is the value of your enterprise analytics SAAS or AI product not obvious through it’s UI/UX? Got the data and ML models right...but user adoption of your dashboards and UI isn’t what you hoped it would be?

While it is easier than ever to create AI and analytics solutions from a technology perspective, do you find as a founder or product leader that getting users to use and buyers to buy seems harder than it should be?

If you lead an internal enterprise data team, have you heard that a ”data product” approach can help—but you’re concerned it’s all hype?

My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I share the stories of leaders who are leveraging product and UX design to make SAAS analytics, AI applications, and internal data products indispensable to their customers. After all, you can’t create business value with data if the humans in the loop can’t or won’t use your solutions.

Every 2 weeks, I release interviews with experts and impressive people I’ve met who are doing interesting work at the intersection of enterprise software product management, UX design, AI and analytics—work that you need to hear about and from whom I hope you can borrow strategies.

I also occasionally record solo episodes on applying UI/UX design strategies to data products—so you and your team can unlock financial value by making your users’ and customers’ lives better.

Hashtag: #ExperiencingData.

JOIN MY INSIGHTS LIST FOR 1-PAGE EPISODE SUMMARIES, TRANSCRIPTS, AND FREE UX STRATEGY TIPS https://designingforanalytics.com/ed

ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/

Filtering by: AI/ML ×

Sessions & talks

Showing 51–63 of 63 · Newest first

Search within this event →

109 - The Role of Product Management and Design in Turning ML/AI into a Valuable Business with Bob Mason from Argon Ventures

2023-01-24 Listen
podcast_episode
Bob Mason (Argon Ventures) , Brian T. O’Neill

Today I’m chatting with Bob Mason, Managing Partner at Argon Ventures. Bob is a VC who seeks out early-stage founders in the ML/AI space and helps them inform their go-to-market, product, and design strategies. In this episode, Bob reveals what he looks for in early-stage data and intelligence startups who are trying to leverage ML/AI. He goes on to explain why it’s important to identify what your strengths are and what you enjoy doing so you can surround yourself with the right team. Bob also shares valuable insight into how to earn trust with potential customers as an early-stage startup, how design impacts a product’s success, and his strategy for differentiating yourself and creating a valuable product outside of the ubiquitous “platform play.” 

Highlights/ Skip to:

Bob explains why and how Argon Ventures focuses their investments in intelligent industry companies (00:53) Brian and Bob discuss the importance of prioritizing go-to-market strategy over technology (03:42) How Bob views the career progression from data science to product management, and the ways in which his own career has paralleled that journey (07:21) The role customer adoption and user experience play for Bob and the companies he invests in, both pre-investment and post-investment (11:10) Brian and Bob discuss the design capabilities of different teams and why Bob feels it’s something leaders need to keep top of mind (15:25) Bob explains his recommendation to seek out quick wins for AI companies who can’t expect customers to wait for an ROI (19:09) The importance Bob sees in identifying early adopters during a sales cycle for early-stage startups (21:34) Bob describes how being customer-centric allows start-ups to build trust, garner quick wins, and inform their product strategy (23:42) Bob and Brian dive into Bob’s belief that solving intrinsic business problems by vertical increases a start-up’s chance of success substantially over “the platform play” (27:29) Bob gives insight into product trends he believes are going to be extremely impactful in the near future (29:05)

Quotes from Today’s Episode “In a former life, I was a software engineer, founder, and CTO myself, so I have to watch myself to not just geek out on the technology itself because the most important element when you’re determining if you want to move forward with investment or not, is this: is there a real problem here to be solved or is this technology in search of a problem?” — Bob Mason (01:51)

“User-centric research is really valuable, particularly at the earliest stages. If you’re just off by a degree or two, several years down the road, that can be a really material roadblock that you hit. And so, starting off on the right foot, I think is super, super valuable.” – Bob Mason (06:12)

“I don’t think the technical folks in an early-stage startup absolve themselves of not being really intimately involved with their go-to-market and who they’re ultimately creating value for.” – Bob Mason (07:07)

“When we’re making an investment decision, startups don’t generally have any customers, and so we don’t necessarily use the signal of long-term customer adoption as a driver for our initial investment decision. But it’s very much top of mind after investment and as we’re trying to build and bring the first version of the product to market. Being very thoughtful and mindful of sort of customer experience and long-term adoption is absolutely critical.” – Bob Mason (11:23)

“If you’re a scientist, the way you’re presenting both raw data and sort of summaries of data could be quite different than if you’re working with a business analyst that’s a few years out of college with a liberal arts degree. How you interpret results and then present those results, I think, is actually a very interesting design problem.” – Bob Mason (18:40)

“I think initially, a lot of early AI startups just kind of assumed that customers would be patient and let the system run, [waiting] 3, 6, 9, 12 months [to get this] magical ROI, and that’s just not how people (buyers) operate.” – Bob Mason (21:00)

“Re: platform plays: Obviously, you could still create a tremendous platform that’s very broad, but we think if you focus on the business problem of that particular vertical or domain, that actually creates a really powerful wedge so you can increase your value proposition. You could always increase the breadth of a platform over time. But if you’re not solving that intrinsic problem at the very beginning, you may never get the chance to survive.” – Bob Mason (28:24)

Links Argon Ventures: https://argon.vc/ LinkedIn: https://www.linkedin.com/in/robertmason/details/experience/ Email: [email protected]

108 - Google Cloud’s Bruno Aziza on What Makes a Good Customer-Obsessed Data Product Manager

2023-01-10 Listen
podcast_episode
Brian T. O’Neill , Bruno Aziza (Google Cloud)

Today I’m chatting with Bruno Aziza, Head of Data & Analytics at Google Cloud. Bruno leads a team of outbound product managers in charge of BigQuery, Dataproc, Dataflow and Looker and we dive deep on what Bruno looks for in terms of skills for these leaders. Bruno describes the three patterns of operational alignment he’s observed in data product management, as well as why he feels ownership and customer obsession are two of the most important qualities a good product manager can have. Bruno and I also dive into how to effectively abstract the core problem you’re solving, as well as how to determine whether a problem might be solved in a better way. 

Highlights / Skip to:

Bruno introduces himself and explains how he created his “CarCast” podcast (00:45) Bruno describes his role at Google, the product managers he leads, and the specific Google Cloud products in his portfolio (02:36) What Bruno feels are the most important attributes to look for in a good data product manager (03:59) Bruno details how a good product manager focuses on not only the core problem, but how the problem is currently solved and whether or not that’s acceptable (07:20) What effective abstracting the problem looks like in Bruno’s view and why he positions product management as a way to help users move forward in their career (12:38) Why Bruno sees extracting value from data as the number one pain point for data teams and their respective companies (17:55) Bruno gives his definition of a data product (21:42) The three patterns Bruno has observed of operational alignment when it comes to data product management (27:57) Bruno explains the best practices he’s seen for cross-team goal setting and problem-framing (35:30)

Quotes from Today’s Episode  

“What’s happening in the industry is really interesting. For people that are running data teams today and listening to us, the makeup of their teams is starting to look more like what we do [in] product management.” — Bruno Aziza (04:29)

“The problem is the problem, so focus on the problem, decompose the problem, look at the frictions that are acceptable, look at the frictions that are not acceptable, and look at how by assembling a solution, you can make it most seamless for the individual to go out and get the job done.” – Bruno Aziza (11:28)

“As a product manager, yes, we’re in the business of software, but in fact, I think you’re in the career management business. Your job is to make sure that whatever your customer’s job is that you’re making it so much easier that they, in fact, get so much more done, and by doing so they will get promoted, get the next job.” – Bruno Aziza (15:41)

“I think that is the task of any technology company, of any product manager that’s helping these technology companies: don’t be building a product that’s looking for a problem. Just start with the problem back and solution from that. Just make sure you understand the problem very well.” (19:52)

“If you’re a data product manager today, you look at your data estate and you ask yourself, ‘What am I building to save money? When am I building to make money?’ If you can do both, that’s absolutely awesome. And so, the data product is an asset that has been built repeatedly by a team and generates value out of data.” – Bruno Aziza (23:12)

“[Machine learning is] hard because multiple teams have to work together, right? You got your business analyst over here, you’ve got your data scientists over there, they’re not even the same team. And so, sometimes you’re struggling with just the human aspect of it.” (30:30)

“As a data leader, an IT leader, you got to think about those soft ways to accomplish the stuff that’s binary, that’s the hard [stuff], right? I always joke, the hard stuff is the soft stuff for people like us because we think about data, we think about logic, we think, ‘Okay if it makes sense, it will be implemented.’ For most of us, getting stuff done is through people. And people are emotional, how can you express the feeling of achieving that goal in emotional value?” – Bruno Aziza (37:36)

Links As referenced by Bruno, “Good Product Manager/Bad Product Manager”: https://a16z.com/2012/06/15/good-product-managerbad-product-manager/ LinkedIn: https://www.linkedin.com/in/brunoaziza/ Bruno’s Medium Article on Competing Against Luck by Clayton M. Christensen: https://brunoaziza.medium.com/competing-against-luck-3daeee1c45d4 The Data CarCast on YouTube:  https://www.youtube.com/playlist?list=PLRXGFo1urN648lrm8NOKXfrCHzvIHeYyw

107 - Tom Davenport on Data Product Management and the Impact of a Product Orientation on Enterprise Data Science and ML Initiatives

2022-12-27 Listen
podcast_episode
Brian T. O’Neill , Tom Davenport (Babson College; Oxford University; MIT; Deloitte AI practice)

Today I’m chatting with returning guest Tom Davenport, who is a Distinguished Professor at Babson College, a Visiting Professor at Oxford, a Research Fellow at MIT, and a Senior Advisor to Deloitte’s AI practice. He is also the author of three new books (!) on AI and in this episode, we’re discussing the role of product orientation in enterprise data science teams, the skills required, what he’s seeing in the wild in terms of teams adopting this approach, and the value it can create. Back in episode 26, Tom was a guest on my show and he gave the data science/analytics industry an approximate “2 out of 10” rating in terms of its ability to generate value with data. So, naturally, I asked him for an update on that rating, and he kindly obliged. How are you all doing? Listen in to find out!

Highlights / Skip to:

Tom provides an updated rating (between 1-10) as to how well he thinks data science and analytics teams are doing these days at creating economic value (00:44) Why Tom believes that “motivation is not enough for data science work” (03:06) Tom provides his definition of what data products are and some opinions on other industry definitions (04:22) How Tom views the rise of taking a product approach to data roles and why data products must be tied to value (07:55) Tom explains why he feels top down executive support is needed to drive a product orientation (11:51) Brian and Tom discuss how they feel companies should prioritize true data products versus more informal AI efforts (16:26) The trends Tom sees in the companies and teams that are implementing a data product orientation (19:18) Brian and Tom discuss the models they typically see for data teams and their key components (23:18) Tom explains the value and necessity of data product management (34:49) Tom describes his three new books (39:00)

Quotes from Today’s Episode “Data science in general, I think has been focused heavily on motivation to fit lines and curves to data points, and that particular motivation certainly isn’t enough in that even if you create a good model that fits the data, it doesn’t mean at all that is going to produce any economic value.” – Tom Davenport  (03:05)

“If data scientists don’t worry about deployment, then they’re not going to be in their jobs for terribly long because they’re not providing any value to their organizations.” – Tom Davenport (13:25)

“Product also means you got to market this thing if it’s going to be successful. You just can’t assume because it’s a brilliant algorithm with capturing a lot of area under the curve that it’s somehow going to be great for your company.” – Tom Davenport (19:04)

“[PM is] a hard thing, even for people in non-technical roles, because product management has always been a sort of ‘minister without portfolio’ sort of job, and you know, influence without formal authority, where you are responsible for a lot of things happening, but the people don’t report to you, generally.” – Tom Davenport (22:03)

“This collaboration between a human being making a decision and an AI system that might in some cases come up with a different decision but can’t explain itself, that’s a really tough thing to do [well].” – Tom Davenport (28:04)

“This idea that we’re going to use externally-sourced systems for ML is not likely to succeed in many cases because, you know, those vendors didn’t work closely with everybody in your organization” – Tom Davenport (30:21)

“I think it’s unlikely that [organizational gaps] are going to be successfully addressed by merging everybody together in one organization. I think that’s what product managers do is they try to address those gaps in the organization and develop a process that makes coordination at least possible, if not true, all the time.” – Tom Davenport (36:49)

Links Tom’s LinkedIn: https://www.linkedin.com/in/davenporttom/ Tom’s Twitter: https://twitter.com/tdav All-in On AI by Thomas Davenport & Nitin Mittal, 2023 Working With AI by Thomas Davenport & Stephen Miller, 2022 Advanced Introduction to AI in Healthcare by Thomas Davenport, John Glaser, & Elizabeth Gardner, 2022 Competing On Analytics by Thomas Davenport & Jeanne G. Harris, 2007

105 - Defining “Data Product” the Producty Way and the Non-technical Skills ML/AI Product Managers Need

2022-11-29 Listen
podcast_episode

Today I’m discussing something we’ve been talking about a lot on the podcast recently - the definition of a “data product.” While my definition is still a work in progress, I think it’s worth putting out into the world at this point to get more feedback. In addition to sharing my definition of data products (as defined the “producty way”), on today’s episode definition, I also discuss some of the non-technical skills that data product managers (DPMs) in the ML and AI space need if they want to achieve good user adoption of their solutions. I’ll also share my thoughts on whether data scientists can make good data product managers, what a DPM can do to better understand your users and stakeholders, and how product and UX design factors into this role. 

Highlights/ Skip to:

I introduce my reasons for sharing my definition of a data product (0:46) My definition of data product (7:26) Thinking the “producty” way (8:14) My thoughts on necessary skills for data PMs (in particular, AI & machine learning product management) (12:21) How data scientists can become good data product managers (DPMs) by taking off the data science hat (13:42) Understanding the role of UX design within the context of DPM (16:37) Crafting your sales and marketing strategies to emphasize the value of your product to the people who can use or purchase it (23:07) How to build a team that will help you increase adoption of your data product (30:01) How to build relationships with stakeholders/customers that allow you to find the right solutions for them (33:47) Letting go of a technical identity to develop a new identity as a DPM who can lead a team to build a product that actually gets used (36:32)

Quotes from Today’s Episode “This is what’s missing in some of the other definitions that I see around data products  [...] they’re not talking about it from the customer of the data product lens. And that orientation sums up all of the work that I’m doing and trying to get you to do as well, which is to put the people at the center of the work that you’re doing and not the data science, engineering, tech, or design. I want you to put the people at the center.” (6:12) “A data product is a data-driven, end-to-end, human-in-the-loop decision support solution that’s so valuable, users would potentially pay to use it.” (7:26) “I want to plunge all the way in and say, ‘if you want to do this kind of work, then you need to be thinking the product-y way.’ And this means inherently letting go of some of the data science-y way of thinking and the data-first kinds of ways of thinking.” (11:46) “I’ve read in a few places that data scientists don’t make for good data product managers. [While it may be true that they’re more introverted,] I don’t think that necessarily means that there’s an inherent problem with data scientists becoming good data product managers. I think the main challenge will be—and this is the same thing for almost any career transitioning into product management—is knowing when to let go of your former identity and wear the right hat at the right time.” (14:24) “Make better things for people that will improve their life and their outcomes and the business value will follow if you’ve properly aligned those two things together.” (17:21) “The big message here is this: there is always a design and experience, whether it is an API, or a platform, a dashboard, a full application, etc. Since there are no null design choices, how much are you going to intentionally shape that UX, or just pray that it comes out good on the other end? Prayer is not really a reliable strategy.  If you want to routinely do this work right, you need to put intention behind it.” (22:33)  “Relationship building is a must, and this is where applying user experience research can be very useful—not just for users, but also with stakeholders. It’s learning how to ask really good questions and learning the feelings, emotions, and reasons why people ask your team to build the thing that they’ve asked for. Learning how to dig into that is really important.” (26:26)

Links Designing for Analytics Community Work With Me Email Record a question

103 - Helping Pediatric Cardiac Surgeons Make Better Decisions with ML featuring Eugenio Zuccarelli of MIT Media Lab

2022-11-01 Listen
podcast_episode
Brian T. O’Neill , Eugenio Zuccarelli (MIT Media Lab; CVS)

Today I’m chatting with Eugenio Zuccarelli, Research Scientist at MIT Media Lab and Manager of Data Science at CVS. Eugenio explains how he has created multiple algorithms designed to help shape decisions made in life or death situations, such as pediatric cardiac surgery and during the COVID-19 pandemic. Eugenio shared the lessons he’s learned on how to build trust in data when the stakes are life and death. Listen and learn how culture can affect adoption of decision support and ML tools, the impact delivery of information has on the user's ability to understand and use data, and why Eugenio feels that design is more important than the inner workings of ML algorithms.

Highlights/ Skip to:

Eugenio explains why he decided to work on machine learning models for cardiologists and healthcare workers involved in the COVID-19 pandemic (01:53)  The workflow surgeons would use when incorporating the predictive algorithm and application Eugenio helped develop (04:12) The question Eugenio’s predictive algorithm helps surgeons answer when evaluating whether to use various pediatric cardiac surgical procedures (06:37) The path Eugenio took to build trust with experienced surgeons and drive product adoption and the role of UX (09:42) Eugenio’s approach to identifying key problems and finding solutions using data (14:50) How Eugenio has tracked value delivery and adoption success for a tool that relies on more than just accurate data & predictions, but also surgical skill and patient case complexity (22:26) The design process Eugenio started early on to optimize user experience and adoption (28:40) Eugenio’s key takeaways from a different project that helped government agencies predict what resources would be needed in which areas during the COVID-19 pandemic (34:45)

Quotes from Today’s Episode “So many people today are developing machine-learning models, but I truly find the most difficult parts to be basically everything around machine learning … culture, people, stakeholders, products, and so on.” — Eugenio Zuccarelli (01:56)

“Developing machine-learning components, clean data, developing the machine-learning pipeline, those were the easy steps. The difficult ones who are gaining trust, as you said, developing something that was useful. And talking about trust, it’s especially tricky in the healthcare industry.” — Eugenio Zuccarelli (10:42)

“Because this tennis match, this ping-pong match between what can be done and what’s [the] problem [...] thankfully, we know, of course, it is not really the route to go. We don’t want to develop technology for the sake of it.” — Eugenio Zuccarelli (14:49)

“We put so much effort on the machine-learning side and then the user experience is so key, it’s probably even more important than the inner workings.” — Eugenio Zuccarelli (29:22)

“It was interesting to see exactly how the doctor is really focused on their job and doing it as well as they can, not really too interested in fancy [...] solutions, and so we were really able to not focus too much on appearance or fancy components, but more on usability and readability.” — Eugenio Zuccarelli (33:45)

“People’s ability to trust data, and how this varies from a lot of different entities, organizations, countries, [etc.] This really makes everything tricky. And of course, when you have a pandemic, this acts as a catalyst and enhances all of these cultural components.” — Eugenio Zuccarelli (35:59)

“I think [design success] boils down to delivery. You can package the same information in different ways [so that] it actually answers their questions in the ways that they’re familiar with.” — Eugenio Zuccarelli (37:42)

Links LinkedIn: https://www.linkedin.com/in/jayzuccarelli Twitter: twitter.com/jayzuccarelli Personal website: https://eugeniozuccarelli.com Medium: jayzuccarelli.medium.com

101 - Insights on Framing IOT Solutions as Data Products and Lessons Learned from Katy Pusch

2022-10-04 Listen
podcast_episode

Today I’m chatting with Katy Pusch, Senior Director of Product and Integration for Cox2M. Katy describes the lessons she’s learned around making sure that the “juice is always worth the squeeze” for new users to adopt data solutions into their workflow. She also explains the methodologies she’d recommend to data & analytics professionals to ensure their IOT and data products are widely adopted. Listen in to find out why this former analyst turned data product leader feels it’s crucial to focus on more than just delivering data or AI solutions, and how spending more time upfront performing qualitative research on users can wind up being more efficient in the long run than jumping straight into development.

Highlights/ Skip to:

What Katy does at Cox2M, and why the data product manager role is so hard to define (01:07) Defining the value of the data in workflows and how that’s approached at Cox2M (03:13) Who buys from Cox2M and the customer problems that Katy’s product solves (05:57) How Katy approaches the zero-to-one process of taking IOT sensor data and turning it into a customer experience that provides a valuable solution (08:00) What Katy feels best motivates the adoption of a new solution for users (13:21) Katy describes how she spends more time upfront before development to ensure she’s solving the right problems for users (16:13) Katy’s views on the importance of data science & analytics pros being able to communicate in the language of their audience (20:47) The differences Katy sees between designing data products for sophisticated data users vs a broader audience (24:13) The methods Katy uses to effectively perform qualitative research and her triangulation method to surface the real needs of end users (27:29) Katy’s views on the most valuable skills for future data product managers (35:24)

Quotes from Today’s Episode “I’ve had the opportunity to get a little bit closer to our customers than I was in the beginning parts of my tenure here at Cox2M. And it’s just like a SaaS product in the sense that the quality of your data is still dependent on your customers’ workflows and their ability to engage in workflows that supply accurate data. And it’s been a little bit enlightening to realize that the same is true for IoT.” – Katy Pusch (02:11)

“Providing insights to executives that are [simply] interesting is not really very impactful. You want to provide things that are actionable and that drive the business forward.” – Katy Pusch (4:43)

“So, there’s one side of it, which is [the] happy path: figure out a way to embed your product in the customer’s existing workflow. That’s where the most success happens. But in the situation we find ourselves in right now with [this IoT solution], we do have to ask them to change their workflow.”-- Katy Pusch (12:46)

“And the way to communicate [the insight to other stakeholders] is not with being more precise with your numbers [or adding] statistics. It’s just to communicate the output of your analysis more clearly to the person who needs to be able to make a decision.” -- Katy Pusch (23:15)

“You have to define ‘What decision is my user making on a repeated basis that is worth building something that it does automatically?’ And so, you say, ‘What are the questions that my user needs answers to on a repeated basis?’ … At its essence, you’re answering three or four questions for that user [that] have to be the most important [...] questions for your user to add value. And that can be a difficult thing to derive with confidence.” – Katy Pusch (25:55)

“The piece of workflow [on the IOT side] that’s really impactful there is we’re asking for an even higher degree of change management in that case because we’re asking them to attach this device to their vehicle, and then detach it at a different point in time and there’s a procedure in the solution to allow for that, but someone at the dealership has to engage in that process. So, there’s a change management in the workflow that the juice has to be worth the squeeze to encourage a customer to embark in that journey with you.” – Katy Pusch (12:08)

“Finding people in your organization who have the appetite to be cross-functionally educated, particularly in a data arena, is very important [to] help close some of those communication gaps.” – Katy Pusch (37:03)

100 - Why Your Data, AI, Product & Business Strategies Must Work Together (and Digital Transformation is The Wrong Framing) with Vin Vashishta

2022-09-20 Listen
podcast_episode

Today I’m chatting with Vin Vashishta, Founder of V Squared. Vin believes that with methodical strategic planning, companies can prepare for continuous transformation by removing the silos that exist between leadership, data, AI, and product teams. How can these barriers be overcome, and what is the impact of doing so? Vin answers those questions and more, explaining why process disruption is necessary for long-term success and gives real-world examples of companies who are adopting these strategies.

Highlights/ Skip to:

What the AI ‘Last Mile’ Problem is (03:09) Why Vin sees so many businesses are reevaluating their offerings and realigning with their core business model (09:01) Why every company today is struggling to figure out how to bridge the gap between data, product, and business value (14:25) How the skillsets needed for success are evolving for data, product, and business leaders (14:40) Vin’s process when he’s helping a team with a data strategy, and what the end result looks like (21:53) Why digital transformation is dead, and how to reframe what business transformation means in today’s day and age (25:03) How Airbnb used data to inform their overall strategy to survive during a time of massive industry disruption, and how those strategies can be used by others as a preventative measure (29:03) Unpacking how a data strategy leader can work backward from a high-level business strategy to determining actionable steps and use cases for ML and analytics (32:52) Who (what roles) are ultimately responsible in an ideal strategy planning session? (34:41) How the C-Suite can bridge business & data strategy and the impact the world’s largest companies are seeing as a result (36:01)

Quotes from Today’s Episode “And when you have that [core business & technology strategy] disconnect, technology goes in one direction, what the business needs and what customers need sort of lives outside of the silo.” – Vin Vashishta (06:06)

“Why are we doing data and not just traditional software development? Why are we doing data science and not analytics? There has to be a justification because each one of these is more expensive than the last, each one is, you know, less certain.” – Vin Vashishta (10:36)

“[The right people to train] are smart about the technology, but have also lived with the users, have some domain expertise, and the interest in making a bigger impact. Let’s put them in strategy roles.” – Vin Vashishta (18:58) “You know, this is never going to end. Transformation is continuous. I don’t call it digital transformation anymore because that’s making you think that this thing is somehow a once-in-a-generation change. It’s not. It’s once every five years now.” – Vin Vashishta (25:03) “When do you want to have those [business] opportunities done by? When do you want to have those objectives completed by? Well, then that tells you how fast you have to transform if you want to use each one of these different technologies.” – Vin Vashishta (25:37) “You’ve got to disrupt the process. Strategy planning is not the same anymore. Look at how Amazon does it. ... They are destroying their competitors because their strategy planning process is both expert and data model-driven.” – Vin Vashishta (33:44) “And one of the critical things for CDOs to do is tell stories with data to the board. When they sit in and talk to the board. They need to tell those stories about how one data point hit this one use case and the company made $4 million.” – Vin Vashishta (39:33)

Links HumblePod: https://humblepod.com V Squared: https://datascience.vin LinkedIn: https://www.linkedin.com/in/vineetvashishta/ Twitter: https://twitter.com/v_vashishta YouTube channel: https://www.youtube.com/c/TheHighROIDataScientist Substack: https://vinvashishta.substack.com/

098 - Why Emilie Schario Wants You to Run Your Data Team Like a Product Team

2022-08-23 Listen
podcast_episode
Brian T. O’Neill , Emilie Schario (Amplify Partners)

Today I’m chatting with Emilie Shario, a Data Strategist in Residence at Amplify Partners. Emilie thinks data teams should operate like product teams. But what led her to that conclusion, and how has she put the idea into practice? Emilie answers those questions and more, delving into what kind of pushback and hiccups someone can expect when switching from being data-driven to product-driven and sharing advice for data scientists and analytics leaders.

Highlights / Skip to:

Answering the question “whose job is it” (5:18) Understanding and solving problems instead of just building features people ask for (9:05) Emilie explains what Amplify Partners is and talks about her work experience and how it fuels her perspectives on data teams (11:04) Emilie and I talk about the definition of data product (13:00) Emilie talks about her approach to building and training a data team (14:40) We talk about UX designers and how they fit into Emilie’s data teams (18:40) Emilie talks about the book and blog “Storytelling with Data” (21:00) We discuss the push back you can expect when trying to switch a team from being data driven to being product driven (23:18) What hiccups can people expect when switching to a product driven model (30:36) Emilie’s advice for data scientists and and analyst leaders (35:50) Emilie explains what Locally Optimistic is (37:34)

Quotes from Today’s Episode “Our thesis is…we need to understand the problems we’re solving before we start building solutions, instead of just building the things people are asking for.” — Emilie (2:23)

“I’ve seen this approach of flipping the ask on its head—understanding the problem you’re trying to solve—work and be more successful at helping drive impact instead of just letting your data team fall into this widget builder service trap.” — Emilie (4:43)

“If your answer to any problem to me is, ‘That’s not my job,’ then I don’t want you working for me because that’s not what we’re here for. Your job is whatever the problem in front of you that needs to be solved.” — Emilie (7:14)

“I don’t care if you have all of the data in the world and the most talented machine learning engineers and you’ve got the ability to do the coolest new algorithm fancy thing. If it doesn’t drive business impact, it doesn’t matter.” — Emilie (7:52)

“Data is not just a thing that anyone can do. It’s not just about throwing numbers in a spreadsheet anymore. It’s about driving business impact. But part of how we drive business impact with data is making it accessible. And accessible isn’t just giving people the numbers, it’s also communicating with it effectively, and UX is a huge piece of how we do that.” — Emilie (19:57)

“There are no null choices in design. Someone is deciding what some other human—a customer, a client, an internal stakeholder—is going to use, whether it’s a React app, or a Power BI dashboard, or a spreadsheet dump, or whatever it is, right? There will be an experience that is created, whether it is intentionally created or not.” — Brian (20:28)

“People will think design is just putting in colors that match together, like, or spinning the color wheel and seeing what lands. You know, there’s so much more to it. And it is an expertise; it is a domain that you have to develop.” — Emilie (34:58)

Links Referenced: Blog post by Rifat Majumder storytellingwithdata.com Experiencing Data Episode 28 with Cole Nussbaumer Knaflic locallyoptimistic.com Twitter: @emilieschario

094 - The Multi-Million Dollar Impact of Data Product Management and UX with Vijay Yadav of Merck

2022-06-28 Listen
podcast_episode
Brian T. O’Neill , Vijay Yadav (Center for Mathematical Sciences at Merck)

Today I sit down with Vijay Yadav, head of the data science team at Merck Manufacturing Division. Vijay begins by relating his own path to adopting a data product and UX-driven approach to applied data science, andour chat quickly turns to the ever-present challenge of user adoption. Vijay discusses his process of designing data products with customers, as well as the impact that building user trust has on delivering business value. We go on to talk about what metrics can be used to quantify adoption and downstream value, and then Vijay discusses the financial impact he has seen at Merck using this user-oriented perspective. While we didn’t see eye to eye on everything, Vijay was able to show how focusing on the last mile UX has had a multi-million dollar impact on Merck. The conversation concludes with Vijay’s words of advice for other data science directors looking to get started with a design and user-centered approach to building data products that achieve adoption and have measurable impact.

In our chat, we covered Vijay’s design process, metrics, business value, and more: 

Vijay shares how he came to approach data science with a data product management approach and how UX fits in (1:52) We discuss overcoming the challenge of user adoption by understanding user thinking and behavior (6:00) We talk about the potential problems and solutions when users self-diagnose their technology needs (10:23) Vijay delves into what his process of designing with a customer looks like (17:36) We discuss the impact “solving on the human level” has on delivering real world benefits and building user trust (21:57) Vijay talks about measuring user adoption and quantifying downstream value—and Brian discusses his concerns about tool usage metrics as means of doing this (25:35) Brian and Vijay discuss the multi-million dollar financial and business impact Vijay has seen at Merck using a more UX  driven approach to data product development (31:45) Vijay shares insight on what steps a head of data science  might wish to take to get started implementing a data product and UX approach to creating ML and analytics applications that actually get used  (36:46)

Quotes from Today’s Episode “They will adopt your solution if you are giving them everything they need so they don’t have to go look for a workaround.” - Vijay (4:22)

“It’s really important that you not only capture the requirements, you capture the thinking of the user, how the user will behave if they see a certain way, how they will navigate, things of that nature.” - Vijay (7:48)

“When you’re developing a data product, you want to be making sure that you’re taking the holistic view of the problem that can be solved, and the different group of people that we need to address. And, you engage them, right?” - Vijay (8:52)

“When you’re designing in low fidelity, it allows you to design with users because you don’t spend all this time building the wrong thing upfront, at which point it’s really expensive in time and money to go and change it.” - Brian (17:11)

"People are the ones who make things happen, right? You have all the technology, everything else looks good, you have the data, but the people are the ones who are going to make things happen.” - Vijay (38:47)

“You want to make sure that you [have] a strong team and motivated team to deliver. And the human spirit is something, you cannot believe how stretchable it is. If the people are motivated, [and even if] you have less resources and less technology, they will still achieve [your goals].” - Vijay (42:41)

“You’re trying to minimize any type of imposition on [the user], and make it obvious why your data product  is better—without disruption. That’s really the key to the adoption piece: showing how it is going to be better for them in a way they can feel and perceive. Because if they don’t feel it, then it’s just another hoop to jump through, right?” - Brian (43:56)

Resources and Links:  LinkedIn: https://www.linkedin.com/in/vijyadav/

090 - Michelle Carney’s Mission With MLUX: Bringing UX and Machine Learning Together

2022-05-03 Listen
podcast_episode

Michelle Carney began her career in the worlds of neuroscience and machine learning where she worked on the original Python Notebooks. As she fine-tuned ML models and started to notice discrepancies in the human experience of using these models, her interest turned towards UX. Michelle discusses how her work today as a UX researcher at Google impacts her work with teams leveraging ML in their applications. She explains how her interest in the crossover of ML and UX led her to start MLUX, a collection of meet-up events where professionals from both data science and design can connect and share methods and ideas. MLUX now hosts meet-ups in several locations as well as virtually. 

Our conversation begins with Michelle’s explanation of how she teaches data scientists to integrate UX into the development of their products. As a teacher, Michelle utilizes the IDEO Design Kit with her students at the Stanford School of Design (d.school). In her teaching she shares some of the unlearning that data scientists need to do when trying to approach their work with a UX perspective in her course, Designing Machine Learning.

Finally, we also discussed what UX designers need to know about designing for ML/AI. Michelle also talks about how model interpretability is a facet of UX design and why model accuracy isn’t always the most important element of a ML application. Michelle ends the conversation with an emphasis on the need for more interdisciplinary voices in the fields of ML and AI. 

Skip to a topic here:

Michelle talks about what drove her career shift from machine learning and neuroscience to user experience (1:15) Michelle explains what MLUX is (4:40) How to get ML teams on board with the importance of user experience (6:54) Michelle discusses the “unlearning” data scientists might have to do as they reconsider ML from a UX perspective (9:15) Brian and Michelle talk about the importance of considering the UX from the beginning of model development  (10:45) Michelle expounds on different ways to measure the effectiveness of user experience (15:10) Brian and Michelle talk about what is driving the increase in the need for designers on ML teams (19:59) Michelle explains the role of design around model interpretability and explainability (24:44)

Quotes from Today’s Episode “The first step to business value is the hurdle of adoption. A user has to be willing to try—and care—before you ever will get to business value.” - Brian O’Neill (13:01)

“There’s so much talk about business value and there’s very little talk about adoption. I think providing value to the end-user is the gateway to getting any business value. If you’re building anything that has a human in the loop that’s not fully automated, you can’t get to business value if you don’t get through the first gate of adoption.” - Brian O’Neill (13:17)

“I think that designers who are able to design for ambiguity are going to be the ones that tackle a lot of this AI and ML stuff.” - Michelle Carney (19:43)

“That’s something that we have to think about with our ML models. We’re coming into this user’s life where there’s a lot of other things going on and our model is not their top priority, so we should design it so that it fits into their ecosystem.” - Michelle Carney (3:27)

“If we aren’t thinking about privacy and ethics and explainability and usability from the beginning, then it’s not going to be embedded into our products. If we just treat usability of our ML models as a checkbox, then it just plays the role of a compliance function.” - Michelle Carney (11:52)

“I don’t think you need to know ML or machine learning in order to design for ML and machine learning. You don’t need to understand how to build a model, you need to understand what the model does. You need to understand what the inputs and the outputs are.” - Michelle Carney (18:45)

Links Twitter @mluxmeetup: https://twitter.com/mluxmeetup MLUX LinkedIn: https://www.linkedin.com/company/mlux/ MLUX YouTube channel: https://bit.ly/mluxyoutube Twitter @michelleRcarney: https://twitter.com/michelleRcarney IDEO Design Kit - https://tinyurl.com/2p984znh 

087 - How Data Product Management and UX Integrate with Data Scientists at Albertsons Companies to Improve the Grocery Shopping Experience

2022-03-22 Listen
podcast_episode
Brian T. O’Neill , Danielle Crop (Albertsons Companies)

For Danielle Crop, the Chief Data Officer of Albertsons, to draw distinctions between “digital” and “data” only limits the ability of an organization to create useful products. One of the reasons I asked Danielle on the show is due to her background as a CDO and former SVP of digital at AMEX, where she also managed  product and design groups. My theory is that data leaders who have been exposed to the worlds of software product and UX design are prone to approach their data product work differently, and so that’s what we dug into this episode.   It didn’t take long for Danielle to share how she pushes her data science team to collaborate with business product managers for a “cross-functional, collaborative” end result. This also means getting the team to understand what their models are personalizing, and how customers experience the data products they use. In short, for her, it is about getting the data team to focus on “outcomes” vs “outputs.”

Scaling some of the data science and ML modeling work at Albertsons is a big challenge, and we talked about one of the big use cases she is trying to enable for customers, as well as one “real-life” non-digital experience that her team’s data science efforts are behind.

The big takeaway for me here was hearing how a CDO like Danielle is really putting customer experience and the company’s brand at the center of their data product work, as opposed solely focusing on ML model development, dashboard/BI creation, and seeing data as a raw ingredient that lives in a vacuum isolated from people.  

In this episode, we cover:

Danielle’s take on the “D” in CDO: is the distinction between “digital” and “data” even relevant, especially for a food and drug retailer? (01:25) The role of data product management and design in her org and how UX (i.e. shopper experience) is influenced by and considered in her team’s data science work (06:05) How Danielle’s team thinks about “customers” particularly in the context of internal stakeholders vs. grocery shoppers  (10:20) Danielle’s current and future plans for bringing her data team into stores to better understand shoppers and customers (11:11) How Danielle’s data team works with the digital shopper experience team (12:02)  “Outputs” versus “Outcomes”  for product managers, data science teams, and data products (16:30) Building customer loyalty, in-store personalization, and long term brand interaction with data science at Albertsons (20:40) How Danielle and her team at Albertsons measure the success of their data products (24:04) Finding the problems, building the solutions, and connecting the data to the non-technical side of the company (29:11)

Quotes from Today’s Episode “Data always comes from somewhere, right? It always has a source. And in our modern world, most of that source is some sort of digital software. So, to distinguish your data from its source is not very smart as a data scientist. You need to understand your data very well, where it came from, how it was developed, and software is a massive source of data. [As a CDO], I think it’s not important to distinguish between [data and digital]. It is important to distinguish between roles and responsibilities, you need different skills for these different areas, but to create an artificial silo between them doesn’t make a whole lot of sense to me.”- Danielle  (03:00)

“Product managers need to understand what the customer wants, what the business needs, how to pass that along to data scientists and data scientists, and to understand how that’s affecting business outcomes. That’s how I see this all working. And it depends on what type of models they’re customizing and building, right? Are they building personalization models that are going to be a digital asset? Are they building automation models that will go directly to some sort of operational activity in the store? What are they trying to solve?” - Danielle (06:30)

“In a company that sells products—groceries—to individuals, personalization is a huge opportunity. How do we make that experience, both in-digital and in-store, more relevant to the customer, more sticky and build loyalty with those customers? That’s the core problem, but underneath that is you got to build a lot of models that help personalize that experience. When you start talking about building a lot of different models, you need scale.”  - Danielle (9:24)

“[Customer interaction in the store] is a true big data problem, right, because you need to use the WiFi devices, et cetera. that you have in store that are pinging the devices at all times, and it’s a massive amount of data. Trying to weed through that and find the important signals that help us to actually drive that type of personalized experience is challenging. No one’s gotten there yet. I hope that we’ll be the first.” -  Danielle (19:50)

“I can imagine a checkout clerk who doesn’t want to talk to the customer, despite a data-driven suggestion appearing on the clerk’s monitor as to how to personalize a given customer interaction. The recommendation suggested to the clerk may be ‘accurate from a data science point of view, but if the clerk doesn’t actually act on it, then the data product didn’t provide any value. When I train people in my seminar, I try to get them thinking about that last mile. It may not be data science work, and maybe you have a big enough org where that clerk/customer experience is someone else’s responsibility, but being aware that this is a fault point and having a cross-team perspective is key.” - Brian @rhythmspice (24:50)

“We’re going through a moment in time in which trust in data is shaky. What I’d like people to understand and know on a broader philosophical level, is that in order to be able to understand data and use it to make decisions, you have to know its source. You have to understand its source. You have to understand the incentives around that source of data….you have to look at the data from the perspective of what it means and what the incentives were for creating it, and then analyze it, and then give an output. And fortunately, most statisticians, most data scientists, most people in most fields that I know, are incredibly motivated to be ethical and accurate in the information that they’re putting out.” - Danielle (34:15)

086 - CED: My UX Framework for Designing Analytics Tools That Drive Decision Making

2022-03-08 Listen
podcast_episode

Today, I’m flying solo in order to introduce you to CED: my three-part UX framework for designing your ML / predictive / prescriptive analytics UI around trust, engagement, and indispensability. Why this, why now? I have had several people tell me that this has been incredibly helpful to them in designing useful, usable analytics tools and decision support applications. 

I have written about the CED framework before at the following link:

https://designingforanalytics.com/ced

There you will find an example of the framework put into a real-world context. In this episode, I wanted to add some extra color to what is discussed in the article. If you’re an individual contributor, the best part is that you don’t have to be a professional designer to begin applying this to your own data products. And for leaders of teams, you can use the ideas in CED as a “checklist” when trying to audit your team’s solutions in the design phase—before it’s too late or expensive to make meaningful changes to the solutions. 

CED is definitely easier to implement if you understand the basics of human-centered design, including research, problem finding and definition, journey mapping, consulting, and facilitation etc. If you need a step-by-step method to develop these foundational skills, my training program, Designing Human-Centered Data Products, might help. It comes in two formats: a Self-Guided Video Course and a bi-annual Instructor-Led Seminar.

Quotes from Today’s Episode “‘How do we visualize the data?’ is the wrong starting question for designing a useful decision support application. That makes all kinds of assumptions that we have the right information, that we know what the users' goals and downstream decisions are, and we know how our solution will make a positive change in the customer or users’ life.”- Brian (@rhythmspice) (02:07)

“The CED is a UX framework for designing analytics tools that drive decision-making. Three letters, three parts: Conclusions; C, Evidence: E, and Data: D. The tough pill for some technical leaders to swallow is that the application, tool or product they are making may need to present what I call a ‘conclusion’—or if you prefer, an ‘opinion.’ Why? Because many users do not want an ‘exploratory’ tool—even when they say they do. They often need an insight to start with, before exploration time  becomes valuable.” - Brian (@rhythmspice) (04:00)

“CED requires you to do customer and user research to understand what the meaningful changes, insights, and things that people want or need actually are. Well designed ‘Conclusions’—when experienced in an analytics tool using the CED framework—often manifest themselves as insights such as unexpected changes, confirmation of expected changes, meaningful change versus meaningful benchmarks, scoring how KPIs track to predefined and meaningful ranges, actionable recommendations, and next best actions. Sometimes these Conclusions are best experienced as charts and visualizations, but not always—and this is why visualizing the data rarely is the right place to begin designing the UX.” - Brian (@rhythmspice) (08:54)

“If I see another analytics tool that promises ‘actionable insights’ but is primarily experienced as a collection of gigantic data tables with 10, 20, or 30+ columns of data to parse, your design is almost certainly going to frustrate, if not alienate, your users. Not because all table UIs are bad, but because you’ve put a gigantic tool-time tax on the user, forcing them to derive what the meaningful conclusions should be.”   - Brian (@rhythmspice) (20:20)

085 - Dr. William D. Báez on the Journey and ROI of Integrating UX Design into Machine Learning and Analytics Solutions

2022-02-22 Listen
podcast_episode
Brian T. O’Neill , Dr. William D. Báez (Ascend Innovations)

Why design matters in data products is a question that, at first glance, may not be easily answered for some until they see users try to use ML models and analytics to make decisions. For Bill Báez, a data scientist and VP of Strategy at Ascend Innovations, realizing that design and UX matters in this context was a realization that grew over the course of a few years. Bill’s origins in the Air Force, and his transition to Ascend Innovations, instilled lessons about the importance of using design thinking with both clients and users. 

After observing solutions built in total isolation with zero empathy and knowledge of how they were being perceived in the wild, Bill realized the critical need to bring developers “upstairs” to actually observe the people using the solutions that were being built. 

Currently, Ascend Innovation’s consulting is primarily rooted in healthcare and community services, and in this episode, Bill provides some real-world examples where their machine learning and analytics solutions were informed by approaching the problems from a human-centered design perspective. Bill also dives in to where he is on his journey to integrate his UX and data science teams at Ascend so they can create better value for their clients and their client’s constituents. 

Highlights in this episode include:

What caused Bill to notice design for the first time and its importance in data products (03:12) Bridging the gap between data science, UX, and the client’s needs at Ascend (08:07) How to deal with the “presenting problem” and working with feedback (16:00) Bill’s advice for getting designers, UX, and clients on the same page based on his experience to date (23:56) How Bill provides unity for his UX and data science teams   (32:40) The effects of UX in medicine (41:00)

Quotes from Today’s Episode “My journey into Design Thinking started in earnest when I started at Ascend, but I didn’t really have the terminology to use. For example, Design Thinking and UX were actually terms I was not personally aware of until last summer. But now that I know and have been exposed to it and have learned more about it, I realize I’ve been doing a lot of that type of work in earnest since 2018. - Bill (03:37)

“Ascend Innovations has always been product-focused, although again, services is our main line of business. As we started hiring a more dedicated UX team, people who’ve been doing this for their whole career, it really helped me to understand what I had experienced prior to coming to Ascend. Part of the time I was here at Ascend that UX framework and that Design Thinking lens, it really brings a lot more firepower to what data science is trying to achieve at the end of the day.” - Bill (08:29) “Clients were surprised that we were asking such rudimentary questions.  They’ll say ‘Well, we’ve already talked about that,’ or, ‘It should be obvious.’ or ‘Well, why are you asking me such a simple question?’ And we had to explain to them that we wanted to start at the bottom to move to the top. We don’t want to start somewhere midway and get the top. We want to make sure that we are all in alignment with what we’re trying to do, so we want to establish that baseline of understanding. So, we’re going to start off asking very simple questions and work our way up from there...” - Bill (21:09)

“We’re building a thing, but the thing only has value if it creates a change in the world. The world being, in the mind of the stakeholder, in the minds of the users, maybe some third parties that are affected by that stuff, but it’s the change that matters. So what is the better state we want in the future for our client or for our customers and users? That’s the thing we’re trying to create. Not the thing; the change from the thing is what we want, and getting to that is the hard part.” - Brian (@rhythmspice) (26:33)

“This is a gift that you’re giving to [stakeholders] to save time, to save money, to avoid building something that will never get used and will not provide value to them. You do need to push back against this and if they say no, that’s fine. Paint the picture of the risk, though, by not doing design. It’s very easy for us to build a ML model. It’s hard for us to build a model that someone will actually use to make the world better. And in this case, it’s healthcare or support, intervention support for addicts. “Do you really want a model, or do you want an improvement in the lives of these addicts? That’s ultimately where we’re going with this, and if we don’t do this, the risk of us pushing out an output that doesn’t get used is high. So, design is a gift, not a tax...” - Brian (@rhythmspice) (34:34)

“I’d say to anybody out there right now who’s currently working on data science efforts: the sooner you get your people comfortable with the idea of doing Design Thinking, get them implemented into the projects that are currently going on. [...] I think that will be a real game-changer for your data scientists and your organization as a whole...” - Bill  (42:19)