Despite GPT, Claude, Gemini, LLama and the other host of LLMs that we have access to, a variety of organizations are still exploring their options when it comes to custom LLMs. Logging in to ChatGPT is easy enough, and so is creating a 'custom' openAI GPT, but what does it take to create a truly custom LLM? When and why might this be useful, and will it be worth the effort? Vincent Granville is a pioneer in the AI and machine learning space, he is Co-Founder of Data Science Central, Founder of MLTechniques.com, former VC-funded executive, author, and patent owner. Vincent’s corporate experience includes Visa, Wells Fargo, eBay, NBC, Microsoft, and CNET. He is also a former post-doc at Cambridge University and the National Institute of Statistical Sciences. Vincent has published in the Journal of Number Theory, Journal of the Royal Statistical Society, and IEEE Transactions on Pattern Analysis and Machine Intelligence. He is the author of multiple books, including “Synthetic Data and Generative AI”. In the episode, Richie and Vincent explore why you might want to create a custom LLM including issues with standard LLMs and benefits of custom LLMs, the development and features of custom LLMs, architecture and technical details, corporate use cases, technical innovations, ethics and legal considerations, and much more. Links Mentioned in the Show: Read Articles by VincentSynthetic Data and Generative AI by Vincent GranvilleConnect with Vincent on Linkedin[Course] Developing LLM Applications with LangChainRelated Episode: The Power of Vector Databases and Semantic Search with Elan Dekel, VP of Product at PineconeRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
talk-data.com
Speaker
Vincent Granville
2
talks
Filter by Event / Source
Talks & appearances
2 activities · Newest first
Learn what it takes to succeed in the the most in-demand tech job Harvard Business Review calls it the sexiest tech job of the 21st century. Data scientists are in demand, and this unique book shows you exactly what employers want and the skill set that separates the quality data scientist from other talented IT professionals. Data science involves extracting, creating, and processing data to turn it into business value. With over 15 years of big data, predictive modeling, and business analytics experience, author Vincent Granville is no stranger to data science. In this one-of-a-kind guide, he provides insight into the essential data science skills, such as statistics and visualization techniques, and covers everything from analytical recipes and data science tricks to common job interview questions, sample resumes, and source code. The applications are endless and varied: automatically detecting spam and plagiarism, optimizing bid prices in keyword advertising, identifying new molecules to fight cancer, assessing the risk of meteorite impact. Complete with case studies, this book is a must, whether you're looking to become a data scientist or to hire one. Explains the finer points of data science, the required skills, and how to acquire them, including analytical recipes, standard rules, source code, and a dictionary of terms Shows what companies are looking for and how the growing importance of big data has increased the demand for data scientists Features job interview questions, sample resumes, salary surveys, and examples of job ads Case studies explore how data science is used on Wall Street, in botnet detection, for online advertising, and in many other business-critical situations Developing Analytic Talent: Becoming a Data Scientist is essential reading for those aspiring to this hot career choice and for employers seeking the best candidates.