talk-data.com talk-data.com

Topic

apache-spark

2

tagged

Activity Trend

1 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Rishi Yadav ×
Apache Spark 2.x Cookbook

Discover how to harness the power of Apache Spark 2.x for your Big Data processing projects. In this book, you will explore over 70 cloud-ready recipes that will guide you to perform distributed data analytics, structured streaming, machine learning, and much more. What this Book will help me do Effectively install and configure Apache Spark with various cluster managers and platforms. Set up and utilize development environments tailored for Spark applications. Operate on schema-aware data using RDDs, DataFrames, and Datasets. Perform real-time streaming analytics with sources such as Apache Kafka. Leverage MLlib for supervised learning, unsupervised learning, and recommendation systems. Author(s) None Yadav is a seasoned data engineer with a deep understanding of Big Data tools and technologies, particularly Apache Spark. With years of experience in the field of distributed computing and data analysis, Yadav brings practical insights and techniques to enrich the learning experience of readers. Who is it for? This book is ideal for data engineers, data scientists, and Big Data professionals who are keen to enhance their Apache Spark 2.x skills. If you're working with distributed processing and want to solve complex data challenges, this book addresses practical problems. Note that a basic understanding of Scala is recommended to get the most out of this resource.

Spark Cookbook

Spark Cookbook is your practical guide to mastering Apache Spark, encompassing a comprehensive set of patterns and examples. Through its over 60 recipes, you will gain actionable insights into using Spark Core, Spark SQL, Spark Streaming, MLlib, and GraphX effectively for your big data needs. What this Book will help me do Understand how to install and configure Apache Spark in various environments. Build data pipelines and perform real-time analytics with Spark Streaming. Utilize Spark SQL for interactive data querying and reporting. Apply machine learning workflows using MLlib, including supervised and unsupervised models. Develop optimized big data solutions and integrate them into enterprise platforms. Author(s) None Yadav, the author of Spark Cookbook, is an experienced data engineer and technical expert with deep insights into big data processing frameworks. Yadav has spent years working with Spark and its ecosystem, providing practical guidance to developers and data scientists alike. This book reflects their commitment to sharing actionable knowledge. Who is it for? This book is designed for data engineers, developers, and data scientists who work with big data systems and wish to utilize Apache Spark effectively. Whether you're looking to optimize existing Spark applications or explore its libraries for new use cases, this book will provide the guidance you need. A basic familiarity with big data concepts and programming in languages like Java or Python is recommended to make the most out of this book.